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Abstract 

Rice productivity as one of the main commodities in Southeast Asia is often hampered by 

various plant diseases such as Rice Blast, Bacterial Leaf Blight, and Brown Spot, which can cause 

significant economic losses for farmers. This research aims to develop a deep learning-based rice 

leaf disease detection system using Convolutional Neural Networks (CNN) architecture 

technology with a transfer learning approach. The dataset captured by Kaggle is a dataset of 

10,407 rice leaf images categorized into 10 classes, including various diseases and healthy leaves. 

The dataset was divided into three parts, 80% (8,323 images) for training, 15% (1,557 images) for 

validation, and 5% (527 images) for testing. The EfficientNetB0 pretrained model was used for 

feature extraction and classification. Data evaluation used accuracy matrix, precision matrix, 

recall matrix, and F1-score based on confusion matrix. The results showed that the model 

achieved global accuracy of 98.48%, micro precision of 100%, micro recall of 99.42%, and micro 

F1-score of 99.70%. These findings confirm the effectiveness of the proposed approach in 

automatically detecting rice leaf diseases, contributing significantly to technology-based 

agricultural solutions. 

Keywords Convolutional Neural Network, Transfer Learning, EfficientNet, Disease Detection, Rice 

Leaf Image 
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 Rice productivity, as one of the key commodities in Southeast Asia, is often hindered by various plant 

diseases such as Rice Blast, Bacterial Leaf Blight, and Brown Spot, which can cause significant 

economic losses for farmers. This study aims to develop an automated rice leaf disease detection 

system using deep learning, specifically leveraging the Convolutional Neural Networks (CNN) 

architecture with a transfer learning approach. The dataset used comprises 10,407 images of rice 

leaves categorized into 10 classes, including various diseases and healthy leaves. The dataset is 

divided into three parts: 80% (8,323 images) for training, 15% (1,557 images) for validation, and 

5% (527 images) for testing. The trained EfficientNetB0 model was utilized for feature extraction 

and classification. The evaluation used metrics such as accuracy, precision, recall, and F1-score based 

on a confusion matrix. The results revealed that the model achieved a global accuracy of 98.86%, a 

micro precision of 100%, a micro recall of 99.42%, and a micro F1-score of 99.70%. These findings 

underscore the effectiveness of the proposed approach in automating rice leaf disease detection, 

providing a significant contribution to technology-based agricultural solutions. 
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1. Introduction 

Rice is one of the main commodities in many countries, especially in Southeast Asia, 

which economically and socially depend on optimal yields [1] . However, rice productivity is 

often threatened by various leaf diseases , such as Rice Blast, Bacterial Leaf Blight, and Brown 

Spot that cause significant economic losses to farmers [2] . Early identification of these diseases 

can help farmers take timely mitigation measures. However, traditional methods such as visual 

inspection are often inaccurate and require specialized skills [3] . Developing fast and accurate 

disease detection methods is essential to support sustainable agricultural practices. Artificial 

intelligence technologies, particularly deep learning have provided potential solutions in the 

automated detection of plant diseases [4]. 

In recent years, deep learning-based approaches, namely Convolutional Neural 

Networks (CNNs), have shown many promising results on plant disease identification in 

analyzing images [5]. Convolutional Neural Networks (CNNs) have become one of the dominant 

deep learning architectures in image recognition tasks due to their ability to extract features from 

visual data hierarchically [6]. However, training CNN models from scratch requires large 

datasets and high computational resources. Transfer Learning, which utilizes the weights of 

trained models that have been trained on large datasets such as ImageNet, is becoming a widely 

used approach to improve the efficiency and performance of CNN models on specific tasks [7] . 

In this research, the use of transfer learning to detect rice leaf diseases has been explored by 

utilizing EfficientNet trained models.  

 

2. Method 

The method used for the research can be seen in Figure 1 below. Figure 1 below is an 

overview of the stages of research carried out by researchers: 

 

Figure 1. Stages of the research process 

Figure 1 can be described regarding the explanation per stage. For the stages of the research 

process can be seen below: 

2.1 Data Collection 
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The dataset in the study consists of images of rice leaves based on rice leaf diseases 

into 10 categories. The dataset was obtained from open sources and has been annotated 

by experts to ensure the accuracy of the disease classification. The data was collected from 

several open sources, including databases provided by research institutions and plant 

image datasets published online 

 

2.2 Dataset Split 

The research dataset is broken down into three main parts to ensure that the 

training and evaluation processes are carried out effectively. The first part is the training 

data, which covers 80% of the entire dataset. This data is used to train the model so that 

it can recognize patterns and features relevant to the classification task. Next, the 

validation data, which covers 15% of the dataset, evaluates the model’s performance 

during the training process. Through the validation data, it can be identified whether the 

model is overfitting or underfitting, allowing for adjustments to the training parameters. 

Finally, the testing data, which covers 5% of the dataset, is used for the final evaluation. 

This data measures the model's generalization ability to new data that has not been seen 

during training. 

The dataset is divided randomly but maintains a proportion of the data between 

classes. This aims to prevent class bias so that each category in the dataset has a balanced 

representation in all stages, namely training, validation, and testing. This approach 

ensures that the evaluation results are fair and reflect the model’s overall performance. 

 

2.3 Model Architecture and Transfer Learning 

2.3.1 CNN Architecture Model 

This research uses Google Collab as a platform for model development with TensorFlow 

and Keras libraries to build and train CNNs. CNN is a deep learning architecture built 

specifically for processing data in network networks, such as 2D images. CNN models 

excel in handling visual pattern recognition due to their ability to extract features 

hierarchically, from simple features (edges, corners) to complex features (objects)[6][8] . 

The architecture model in CNN involves the design of the network structure to capture 

data features efficiently. Here are the main components: 
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Figure 2. CNN Architecture Model 

Figure 2 explains the process of the CNN architecture model. The first process is the 

Input Layer used to receive input data such as images from the original image 

dimensions with a size of 480x480 in (RGB) and training images with a size of 256x256 

in (RGB). The second process is Convolutional Layer: This layer performs the 

convolution operation, where a filter (kernel) is used to extract important features from 

the input image. This filter moves across the image to generate a feature map. This 

operation enables detecting features such as edges, textures, or certain patterns.[9] . The 

Third Process is the Pooling Layer: A pooling function (usually max pooling) is used to 

reduce features’ dimensionality while retaining important information. This reduces the 

number of parameters and the risk of overfitting. The Fourth Process is the Fully 

Connected Layer (Dense Layer): Once the feature extraction is complete, this layer 

connects all the neurons to process the feature map into a prediction output i.e. 

Activation Function: Activation functions such as ReLU (Rectified Linear Unit) are used 

to introduce non-linearity, thus allowing the network to learn complex patterns[10][11] 

, Batch Normalization: Used to normalize the data before it goes to the next layer, which 

speeds up training and improves stability, and Dropout: This technique is used to 

prevent overfitting by randomly disabling neurons during training .[12] 

2.3.2. Transfer Learning 

Transfer learning takes models pre-trained in large datasets (such as ImageNet) to solve 

new tasks with smaller datasets. This reduces training time and computational resources. 

The pretrained model used in this research is EfficientNet80, because of its efficiency in 

parameter usage and high performance[13] . The stages of applying transfer learning are 

as follows: first Output Layer Modification: The last fully connected layer is replaced with 
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a Dense layer of size 10 (number of classes) with softmax activation function. Second 

Layer Freezing: The initial layer of the pretrained model is frozen to retain the basic 

features. Third Fine-tuning: The last few layers are unfrozen for adaptation to the new 

dataset. 

 

Figure 3. Training Flowchart Figure 4. Testing Flowchart 

In Figure 3, the Training process can be explained from Data Collection: Collecting relevant data 

(images, text, etc.) for the task. Data Processing: Clean the data by handling missing values, 

normalizing it, and dividing it into training, validation, and testing sets. Model Initialization: 

Determine the model structure (e.g., number of layers, neurons, activation function). Model 

Training: The model is trained by inputting data, and the weights are adjusted at each iteration. 

Loss Calculation: Calculate how far the model's predictions are from the actual values using a 

loss function (e.g., mean square error). Optimizer Update: The optimizer (e.g., Adam) uses the 

calculated loss to adjust the model weights. Epochs: Training is repeated for several epochs 

(iterations) until the model is optimized. Model Evaluation: Evaluates model performance on 

training data, using metrics such as accuracy or loss. Check Convergence: The process stops 

when the model achieves optimal performance or the set number of epochs is reached 
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The testing process can be explained from Data Collection: Use a test dataset that the model has 

not seen during training. Data Processing: Apply the test data preprocessing steps as done during 

training. Model Prediction: Use the trained model to predict the outcome of the test data. Error 

Calculation: Calculate the error or loss for model prediction using appropriate evaluation 

metrics. Performance Evaluation: Analyze performance metrics e.g. accuracy matrix, precision 

matrix, recall matrix, etc. Interpretation of Results: Interpret the results to understand the model 

behavior and decide if the model is ready for use. 

2.4 Performance Evaluation 

Once the model is trained, its performance is evaluated using several metrics to 

assess the accuracy and generalization ability of the new data[14] . Since the dataset in 

this study consists of 10 disease classes, the formula used for each measurement 

parameter is as follows:  

1. Global Accuracy: Predicts and Measures the correct percentage of total predictions, 

providing a generalized view of the model's performance. Accuracy is calculated using 

the global accuracy formula in equation (1).[15] 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃

∑ 𝑆𝐴𝑀𝑃𝐿𝐸
  (1) 

In model evaluation using confusion matrix, the Total True Positive (TP) refers to the 

accumulation of all predictions for each class, which are the diagonal elements of the 

matrix. In other words, TP indicates the number of times the model accurately identifies 

the sample in the correct category. It directly measures the model's ability to correctly 

recognize the data corresponding to each class. Meanwhile, Total Sample refers to the 

overall amount of data used in the evaluation, calculated by summing up all the elements 

in the confusion matrix. Total Sample provides context for understanding the distribution 

of model predictions and calculating performance metrics such as accuracy, precision, 

and recall. 

The function of calculating Total TP is to assess the extent to which the model can make 

correct predictions, which is an important component in calculating precision and recall 

metrics. Total Sample is the basis for calculating the global accuracy metric, which is the 

ratio of correct predictions to the overall data. Combining these two values helps provide 

an overall picture of the model's effectiveness in data classification. 
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2. Micro Precision: Calculates the proportion of correct positive predictions in each class. 

Precision is very important in detecting certain diseases to avoid false positive results, 

where healthy leaves are misclassified as diseases. Precision is calculated using the micro 

precision formula in equation (2).[15] 

  (2) 

3. Recall: Calculates the proportion of actual cases from each class that are correctly 

detected. Recall is useful to ensure that the model identifies all disease cases. Recall is 

calculated using the micro recall formula in equation (3).[15] 

  (3) 

4. F1-score: F1-score combines harmonized precision and recall to provide an overall picture 

of the model's performance in each class, especially when there is an imbalance in the 

number of samples. F1-score is calculated using the micro F1-score formula in equation 

(4).[15] 

(4) 

 

To ensure that the model evaluation results are not biased towards a particular 

subset of the dataset, we also applied k-fold cross-validation with 5-fold, where the 

dataset is divided into five subsets and the model is trained five times, with each subset 

alternating as validation data. This technique allows for more reliable estimation of model 

performance. 

 

3. Results and Discussion 

This section explains and presents each processed data result from each stage 

described in the previous section. 

 

3.1 Data Collection 
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The dataset used in the research includes 10,407 rice leaf images categorized into 10 

classes, including various diseases and healthy leaves. Each class represents a specific condition 

of rice leaf images, namely rice leaf diseases (Normal, Bacterial Leaf Streak, Dead Hearth, Hispa 

Bacterial Leaf Blight, Blast, Brown Spot, Downy Mildew, Bacterial Panicle Blight, and Tungro). 

The example image used in this research is as shown in the picture below: 

     
Image  

a) Normal 

Image  

b) Brown Spot 

Image  

c) Bacterial leaf 

blight 

Image  

d) Blast 

Image  

e) Tungro 

Figure 5. Example of Rice Leaf Disease Image 

Each class is provided with representative images to train and evaluate the performance 

of the disease detection model. For example, the Normal class includes images of healthy rice 

leaves with no signs of disease, while the Bacterial Leaf Blight class contains images of leaves 

with typical brown spot symptoms. The images in the dataset show variations in pattern, color, 

and intensity of symptoms, ensuring that the dataset covers the diversity of leaf conditions found 

in the field. 

The following visual illustration of some of the images used for each class. These images 

provide a real picture of the difference in characteristics between the disease and normal classes, 

which is the basis for the model to learn to recognize relevant patterns. Table 1 shows example 

images for each of the 10 labels.

Table 1. Dataset from Kaggle 

No. Name of disease Number of 

Original 

Datasets 

Number of 

Testing 

Datasets 

Number of 

Training 

Datasets 

Number of 

Validation 

Datasets 

1 Normal 1764 89 1411 264 

2 Bacterial leaf blight 479 25 383 71 

3 Bacterial leaf streak 380 19 304 57 

4 Bacterial panicle blight 337 18 269 50 

5 Blast 1738 88 1390 260 

6 Brown spot 965 49 772 144 

7 Dead hearth 1442 73 1153 216 

8 Downy mildew 620 31 496 93 

9 Hispa 1594 80 1275 239 

10 Tungro 1088 55 870 163 

Total  Number of Diseases 

= 10 

Original 

Dataset 

= 10.407 

Dataset 

Testing 

= 527 

Traning Dataset 

= 8.323 

Dataset Validation 

= 15.557 
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3.2 Dataset Split 

Furthermore, the dataset is split into three main datasets: TrainingValidation, and 

Testing. The training data covers 80% of the total 10,407 dataset,  is 8,323 images used to 

train the model. Meanwhile, the validation data, which amounted to 1,557 images 

constituting 15% of the total dataset, was used to monitor the model's performance during 

training. The testing data consisted of 527 images which constituted 5% of the dataset and 

was used to measure the model’s accuracy after the training was completed. This division 

aims to ensure that the model can learn well without overfitting. 

 

3.3 Model Architecture and Transfer Learning 

The CNN model is applied using a customized EfficientNet architecture to classify 

rice leaf diseases. The training process is performed by setting the initial learning rate at 

0.1, with learning rate adjustments every epoch to improve training accuracy and 

stability. The optimizer uses the Stochastic Gradient Descent (SGD) method with a 

momentum of 0.9, which helps accelerate convergence and reduce fluctuations during 

the training process. The number of iterations is 100 epochs to provide an opportunity for 

the model to update parameters (weights and biases) and improve accuracy and reduce 

errors. The experimental results show that applying an appropriate learning rate can 

significantly improve the performance of the model. 

At this stage the layers in the Convolutional Neural Network (CNN) are 

integrated with EfficientNet which consists of: 

1. Input Layer: The image is input into the network. 

2. EfficientNet Block: This section applies compound scaling settings (depth, width, and 

resolution adjustments). 

3. Convolutional Layers: Feature extraction using filters. 

4. Pooling Layers: Lower the resolution of features to reduce dimensions. 

5. Fully Connected Layer: Combines features to produce the final output. 

6. Output Layer: The result of the network's classification or prediction. 

 

3.4 Performance Evaluation 

In the evaluation stage, model performance is measured using the model 

confusion matrix (CM) which is divided into four main parts: CM True Positive (TP), CM 

True Negative (TN), CM False Positive (FP), and CM False Negative (FN). The 

explanations of TP, TN, FP and FN in this study are as follows: 

1. True Positive (TP): The number of images that are actually detected as a disease 

corresponding to the correct class. For example, an image of a rice leaf that is indeed 

infected with a disease and the model also identifies it as that disease. 

2. True Negative (TN): The number of images that are truly not infected with the disease, 

and the model also classifies them as healthy. 
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3. False Positive (FP): The number of images that are actually healthy, but the model 

classifies them as disease-infected (type I error). 

4. False Negative (FN): The number of images that are actually infected with the disease, 

but the model misclassifies them as healthy (type II error). 

The following is the confusion matrix generated by the model which in this study 

consists of 10 classes: 

Table 2. Testing Dataset 
Class 

Name 

bacteri

al leaf 

blight 

Bacterial 

leaf 

streak 

Bacterial 

panicle 

blight 

blast Brown 

spot 

Dead 

heart 

Downy 

mildew 
hispa normal tungro TRUE FALSE 

bacterial 

leaf 

blight 

25 0 0 0 0 0 0 0 0 0 25 0 

Bacterial 

leaf 

streak 

0 18 0 1 0 0 0 0 0 0 18 1 

Bacterial 

panicle 

blight 

0 0 18 0 0 0 0 0 0 0 18 0 

blast 0 0 0 88 0 0 0 0 0 0 88 0 

Brown 

spot 

0 0 0 0 49 0 0 0 0 0 49 0 

Dead 

heart 

0 0 0 0 0 72 1 0 0 0 72 1 

Downy 

mildew 

0 0 0 3 0 0 28 0 0 0 28 3 

hispa 0 0 0 1 0 0 0 78 1 0 78 2 

normal 0 0 0 0 0 0 0 0 89 0 89 0 

tungro 0 0 0 0 0 0 1 0 0 54 54 1           
SUBTO

TAL 
519 8 

          
TOTAL 527 

 

 

Based on the confusion matrix, it can be seen that the TP value for each class is 

bacterial leaf blight 25, bacterial leaf streak 18, bacterial panicle blight 18, blast 88, brown 

spot 49, dead hearth 72, downy mildew 28, hispa 78, normal 89 and tungro 54 as shown 

in the diagonal confusion matrix above. This shows that from all the testing data used to 

test the model, most of the data is predicted correctly, resulting in a high TP value from 

the total testing data. By using the values generated in the confusion matrix, the 

percentage level for each measurement parameter is then obtained as follows. 

𝐴𝑘𝑢𝑟𝑎𝑠𝑖 =  
521

527
= 0,9886 𝑎𝑡𝑎𝑢 98,86% 

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =  
521

521 + 0
= 1 𝑎𝑡𝑎𝑢 100% 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
521

521 + 3
= 0,9942 𝑎𝑡𝑎𝑢 99,42% 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × 1 × 0,9942

1 + 0,9942
= 0,9970 𝑎𝑡𝑎𝑢 99,70% 

Based on the calculation for each measurement parameter used, it can be seen that 

the accuracy rate obtained is 98.86%, precision is 100%, recall is 99.42% and F1-Score is 

99.70%. This shows that the performance of the CNN algorithm using Transfer Learning 
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EfficientNet is able to provide excellent performance on disease identification in rice plant 

images. 

 

4.  Conclusion 

In this research, the Convolutional Neural Network (CNN) method using 

Transfer Learning is applied in identifying various types of rice leaf diseases using a 

dataset of rice leaf images. The CNN model implemented, after going through an 

optimization process with EfficientNet, showed excellent performance results in 

processing and classifying images of rice leaf diseases. 

The model evaluation results show a global accuracy of 98.86%, with Micro 

Precision, Micro Recall, and Micro F1-Score results of rice leaf diseases reaching 100%, 

99.42%, and 99.70%. This shows that the CNN model applied with augmentation and 

transfer learning techniques is able to recognize diseases in rice leaves with a very low 

error rate, even on varied datasets. 

Overall, this research shows that the use of transfer learning on CNN architecture, 

with effective data augmentation, can produce highly accurate models for plant disease 

image classification, which can be applied in an automated rice disease detection system. 

 

References 

[1] IRRI, "Enriching Rice-Based Economies: SOUTHEAST ASIA, SOUTH ASIA, & AFRICA." 

2018. 

[2] S. Shekhar, D. Sinha, and A. Kumari, "An Overview of Bacterial Leaf Blight Disease of Rice 

and Different Strategies for its Management," vol. 9, no. 4, pp. 2250-2265, 2020. 

[3] J. Li et al., "An Interpretable High-Accuracy Method for Rice Disease Based on Multisource 

Data and Transfer Learning," Plants, vol. 12, no. 18, pp. 1-22, 2023. 

[4] A. Jafar, N. Bibi, and R. A. Naqvi, "Revolutionizing agriculture with artificial intelligence: 

plant disease detection methods, applications, and their limitations," Front. Plant Sci., vol. 

15, no. March, pp. 1-20, 2024, doi: 10.3389/fpls.2024.1356260. 

[5] B. Tugrul, E. Elfatimi, and R. Eryigit, "Convolutional Neural Networks in Detection of 

Plant Leaf Diseases: A Review," agriculture, vol. 12, no. 8, 2022. 

[6] M. M. Taye, "Theoretical Understanding of Convolutional Neural Network: Concepts, 

Architectures, Applications, Future Directions," Computation, vol. 11, no. 3, pp. 1-23, 2023. 

[7] A. W. Salehi, S. Khan, G. Gupta, B. I. Alabduallah, and A. Almjally, "A Study of CNN and 

Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope," 

sustainability, vol. 15, no. 7, pp. 1-28, 2023. 

[8] Z. Kelta, "An Introduction to Convolutional Neural Networks (CNNs)," datacamp, 2023. 

https://www.datacamp.com/tutorial/introduction-to-convolutional-neural-networks-

cnns. 

[9] T. Wiatowski and H. Bolcskei, "A Mathematical Theory of Deep Convolutional Neural 

Networks for Feature Extraction," IEEE Trans. Inf. Theory, vol. 64, no. 3, 2018. 

[10] Y. Yu, K. Adu, N. Tashi, P. Anokye, X. Wang, and M. A. Ayidzoe, "RMAF: ReLU-

Memristor-like Activation Function for Deep Learning," IEEE Access, vol. 1, no. 1, 2020, 



© Abdul Azis, Abdul Fadlil, Tole Sutikno 

515 

doi: 10.1109/ACCESS.2020.2987829. 

[11] D. Hartmann, D. Franzen, and S. Brodehl, "Studying the Evolution of Neural Activation 

Patterns During Training of Feed-Forward ReLU Networks," Front. Artif. Intell., vol. 4, no. 

1, pp. 1-13, 2021, doi: 10.3389/frai.2021.642374. 

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A 

Simple Way to Prevent Neural Networks from Overfitting," J. Mach. Learn. Res., vol. 15, 

pp. 1929-1958, 2014. 

[13] Y. Fu, "Image classification via fine-tuning with EfficientNet," Keras, 2023. 

https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/#image-

classification-via-finetuning-with-efficientnet. 

[14] S. K. Agrawal, "Metrics to Evaluate your Classification Model to take the right decisions," 

Analytics Vidhya, 2024. https://www.analyticsvidhya.com/blog/2021/07/metrics-to-

evaluate-your-classification-model-to-take-the-right-decisions/. 

[15] V. V. Kumar, "Evaluating machine learning models-metrics and techniques," AI Accelerator 

Institute, 2024. https://translate.google.com/?sl=id&tl=en&text=evaluasi 

performance&op=translate. 

 


