
504

 Journal
Vol. 8, No. 2 (2024) pp. 504-515

https://jurnal.politeknik-kebumen.ac.id/index.php/E-KOMTEK

p-ISSN: 2580-3719 e-ISSN : 2622-3066

Optimization of Convolutional Neural Network (CNN) Using Transfer Learning for Disease

Identification in Rice Leaf Image

Abdul Azis1,2 , Abdul Fadlil3, Tole Sutikno4

1Informatics Study Program, Universitas Ahmad Dahlan, Indonesia, 55191
2Information System Study Program, Universitas Amikom Purwokerto, Indonesia 53127
3,4Department of Electrical Engineering, Ahmad Dahlan University, Indonesia, 53127

 abdazis9@amikompurwokerto.ac.id

 https://doi.org/10.37339/e-komtek.v8i2.2132

Published by Politeknik Piksi Ganesha Indonesia

Article Info

Submitted:

24-11-2024

Revised:

26-12-2024

Accepted:

29-12-2024

Online first:

29-12-2024

Abstract

Rice productivity as one of the main commodities in Southeast Asia is often hampered by

various plant diseases such as Rice Blast, Bacterial Leaf Blight, and Brown Spot, which can cause

significant economic losses for farmers. This research aims to develop a deep learning-based rice

leaf disease detection system using Convolutional Neural Networks (CNN) architecture

technology with a transfer learning approach. The dataset captured by Kaggle is a dataset of

10,407 rice leaf images categorized into 10 classes, including various diseases and healthy leaves.

The dataset was divided into three parts, 80% (8,323 images) for training, 15% (1,557 images) for

validation, and 5% (527 images) for testing. The EfficientNetB0 pretrained model was used for

feature extraction and classification. Data evaluation used accuracy matrix, precision matrix,

recall matrix, and F1-score based on confusion matrix. The results showed that the model

achieved global accuracy of 98.48%, micro precision of 100%, micro recall of 99.42%, and micro

F1-score of 99.70%. These findings confirm the effectiveness of the proposed approach in

automatically detecting rice leaf diseases, contributing significantly to technology-based

agricultural solutions.

Keywords Convolutional Neural Network, Transfer Learning, EfficientNet, Disease Detection, Rice

Leaf Image

 Abstract

 Rice productivity, as one of the key commodities in Southeast Asia, is often hindered by various plant

diseases such as Rice Blast, Bacterial Leaf Blight, and Brown Spot, which can cause significant

economic losses for farmers. This study aims to develop an automated rice leaf disease detection

system using deep learning, specifically leveraging the Convolutional Neural Networks (CNN)

architecture with a transfer learning approach. The dataset used comprises 10,407 images of rice

leaves categorized into 10 classes, including various diseases and healthy leaves. The dataset is

divided into three parts: 80% (8,323 images) for training, 15% (1,557 images) for validation, and

5% (527 images) for testing. The trained EfficientNetB0 model was utilized for feature extraction

and classification. The evaluation used metrics such as accuracy, precision, recall, and F1-score based

on a confusion matrix. The results revealed that the model achieved a global accuracy of 98.86%, a

micro precision of 100%, a micro recall of 99.42%, and a micro F1-score of 99.70%. These findings

underscore the effectiveness of the proposed approach in automating rice leaf disease detection,

providing a significant contribution to technology-based agricultural solutions.

Keywords: Convolutional Neural Network, Transfer Learning, EfficientNet, Disease Detection, Rice

Leaf Images

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License

https://jurnal.politeknik-kebumen.ac.id/index.php/E-KOMTEK
mailto:abdazis9@amikompurwokerto.ac.id
https://doi.org/10.37339/e-komtek.v6i2.934
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

© Abdul Azis, Abdul Fadlil, Tole Sutikno

505

1. Introduction

Rice is one of the main commodities in many countries, especially in Southeast Asia,

which economically and socially depend on optimal yields [1] . However, rice productivity is

often threatened by various leaf diseases , such as Rice Blast, Bacterial Leaf Blight, and Brown

Spot that cause significant economic losses to farmers [2] . Early identification of these diseases

can help farmers take timely mitigation measures. However, traditional methods such as visual

inspection are often inaccurate and require specialized skills [3] . Developing fast and accurate

disease detection methods is essential to support sustainable agricultural practices. Artificial

intelligence technologies, particularly deep learning have provided potential solutions in the

automated detection of plant diseases [4].

In recent years, deep learning-based approaches, namely Convolutional Neural

Networks (CNNs), have shown many promising results on plant disease identification in

analyzing images [5]. Convolutional Neural Networks (CNNs) have become one of the dominant

deep learning architectures in image recognition tasks due to their ability to extract features from

visual data hierarchically [6]. However, training CNN models from scratch requires large

datasets and high computational resources. Transfer Learning, which utilizes the weights of

trained models that have been trained on large datasets such as ImageNet, is becoming a widely

used approach to improve the efficiency and performance of CNN models on specific tasks [7] .

In this research, the use of transfer learning to detect rice leaf diseases has been explored by

utilizing EfficientNet trained models.

2. Method

The method used for the research can be seen in Figure 1 below. Figure 1 below is an

overview of the stages of research carried out by researchers:

Figure 1. Stages of the research process

Figure 1 can be described regarding the explanation per stage. For the stages of the research

process can be seen below:

2.1 Data Collection

© Abdul Azis, Abdul Fadlil, Tole Sutikno

506

The dataset in the study consists of images of rice leaves based on rice leaf diseases

into 10 categories. The dataset was obtained from open sources and has been annotated

by experts to ensure the accuracy of the disease classification. The data was collected from

several open sources, including databases provided by research institutions and plant

image datasets published online

2.2 Dataset Split

The research dataset is broken down into three main parts to ensure that the

training and evaluation processes are carried out effectively. The first part is the training

data, which covers 80% of the entire dataset. This data is used to train the model so that

it can recognize patterns and features relevant to the classification task. Next, the

validation data, which covers 15% of the dataset, evaluates the model’s performance

during the training process. Through the validation data, it can be identified whether the

model is overfitting or underfitting, allowing for adjustments to the training parameters.

Finally, the testing data, which covers 5% of the dataset, is used for the final evaluation.

This data measures the model's generalization ability to new data that has not been seen

during training.

The dataset is divided randomly but maintains a proportion of the data between

classes. This aims to prevent class bias so that each category in the dataset has a balanced

representation in all stages, namely training, validation, and testing. This approach

ensures that the evaluation results are fair and reflect the model’s overall performance.

2.3 Model Architecture and Transfer Learning

2.3.1 CNN Architecture Model

This research uses Google Collab as a platform for model development with TensorFlow

and Keras libraries to build and train CNNs. CNN is a deep learning architecture built

specifically for processing data in network networks, such as 2D images. CNN models

excel in handling visual pattern recognition due to their ability to extract features

hierarchically, from simple features (edges, corners) to complex features (objects)[6][8] .

The architecture model in CNN involves the design of the network structure to capture

data features efficiently. Here are the main components:

© Abdul Azis, Abdul Fadlil, Tole Sutikno

507

Figure 2. CNN Architecture Model

Figure 2 explains the process of the CNN architecture model. The first process is the

Input Layer used to receive input data such as images from the original image

dimensions with a size of 480x480 in (RGB) and training images with a size of 256x256

in (RGB). The second process is Convolutional Layer: This layer performs the

convolution operation, where a filter (kernel) is used to extract important features from

the input image. This filter moves across the image to generate a feature map. This

operation enables detecting features such as edges, textures, or certain patterns.[9] . The

Third Process is the Pooling Layer: A pooling function (usually max pooling) is used to

reduce features’ dimensionality while retaining important information. This reduces the

number of parameters and the risk of overfitting. The Fourth Process is the Fully

Connected Layer (Dense Layer): Once the feature extraction is complete, this layer

connects all the neurons to process the feature map into a prediction output i.e.

Activation Function: Activation functions such as ReLU (Rectified Linear Unit) are used

to introduce non-linearity, thus allowing the network to learn complex patterns[10][11]

, Batch Normalization: Used to normalize the data before it goes to the next layer, which

speeds up training and improves stability, and Dropout: This technique is used to

prevent overfitting by randomly disabling neurons during training .[12]

2.3.2. Transfer Learning

Transfer learning takes models pre-trained in large datasets (such as ImageNet) to solve

new tasks with smaller datasets. This reduces training time and computational resources.

The pretrained model used in this research is EfficientNet80, because of its efficiency in

parameter usage and high performance[13] . The stages of applying transfer learning are

as follows: first Output Layer Modification: The last fully connected layer is replaced with

© Abdul Azis, Abdul Fadlil, Tole Sutikno

508

a Dense layer of size 10 (number of classes) with softmax activation function. Second

Layer Freezing: The initial layer of the pretrained model is frozen to retain the basic

features. Third Fine-tuning: The last few layers are unfrozen for adaptation to the new

dataset.

Figure 3. Training Flowchart Figure 4. Testing Flowchart

In Figure 3, the Training process can be explained from Data Collection: Collecting relevant data

(images, text, etc.) for the task. Data Processing: Clean the data by handling missing values,

normalizing it, and dividing it into training, validation, and testing sets. Model Initialization:

Determine the model structure (e.g., number of layers, neurons, activation function). Model

Training: The model is trained by inputting data, and the weights are adjusted at each iteration.

Loss Calculation: Calculate how far the model's predictions are from the actual values using a

loss function (e.g., mean square error). Optimizer Update: The optimizer (e.g., Adam) uses the

calculated loss to adjust the model weights. Epochs: Training is repeated for several epochs

(iterations) until the model is optimized. Model Evaluation: Evaluates model performance on

training data, using metrics such as accuracy or loss. Check Convergence: The process stops

when the model achieves optimal performance or the set number of epochs is reached

© Abdul Azis, Abdul Fadlil, Tole Sutikno

509

The testing process can be explained from Data Collection: Use a test dataset that the model has

not seen during training. Data Processing: Apply the test data preprocessing steps as done during

training. Model Prediction: Use the trained model to predict the outcome of the test data. Error

Calculation: Calculate the error or loss for model prediction using appropriate evaluation

metrics. Performance Evaluation: Analyze performance metrics e.g. accuracy matrix, precision

matrix, recall matrix, etc. Interpretation of Results: Interpret the results to understand the model

behavior and decide if the model is ready for use.

2.4 Performance Evaluation

Once the model is trained, its performance is evaluated using several metrics to

assess the accuracy and generalization ability of the new data[14] . Since the dataset in

this study consists of 10 disease classes, the formula used for each measurement

parameter is as follows:

1. Global Accuracy: Predicts and Measures the correct percentage of total predictions,

providing a generalized view of the model's performance. Accuracy is calculated using

the global accuracy formula in equation (1).[15]

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃

∑ 𝑆𝐴𝑀𝑃𝐿𝐸
 (1)

In model evaluation using confusion matrix, the Total True Positive (TP) refers to the

accumulation of all predictions for each class, which are the diagonal elements of the

matrix. In other words, TP indicates the number of times the model accurately identifies

the sample in the correct category. It directly measures the model's ability to correctly

recognize the data corresponding to each class. Meanwhile, Total Sample refers to the

overall amount of data used in the evaluation, calculated by summing up all the elements

in the confusion matrix. Total Sample provides context for understanding the distribution

of model predictions and calculating performance metrics such as accuracy, precision,

and recall.

The function of calculating Total TP is to assess the extent to which the model can make

correct predictions, which is an important component in calculating precision and recall

metrics. Total Sample is the basis for calculating the global accuracy metric, which is the

ratio of correct predictions to the overall data. Combining these two values helps provide

an overall picture of the model's effectiveness in data classification.

© Abdul Azis, Abdul Fadlil, Tole Sutikno

510

2. Micro Precision: Calculates the proportion of correct positive predictions in each class.

Precision is very important in detecting certain diseases to avoid false positive results,

where healthy leaves are misclassified as diseases. Precision is calculated using the micro

precision formula in equation (2).[15]

 (2)

3. Recall: Calculates the proportion of actual cases from each class that are correctly

detected. Recall is useful to ensure that the model identifies all disease cases. Recall is

calculated using the micro recall formula in equation (3).[15]

 (3)

4. F1-score: F1-score combines harmonized precision and recall to provide an overall picture

of the model's performance in each class, especially when there is an imbalance in the

number of samples. F1-score is calculated using the micro F1-score formula in equation

(4).[15]

(4)

To ensure that the model evaluation results are not biased towards a particular

subset of the dataset, we also applied k-fold cross-validation with 5-fold, where the

dataset is divided into five subsets and the model is trained five times, with each subset

alternating as validation data. This technique allows for more reliable estimation of model

performance.

3. Results and Discussion

This section explains and presents each processed data result from each stage

described in the previous section.

3.1 Data Collection

© Abdul Azis, Abdul Fadlil, Tole Sutikno

511

The dataset used in the research includes 10,407 rice leaf images categorized into 10

classes, including various diseases and healthy leaves. Each class represents a specific condition

of rice leaf images, namely rice leaf diseases (Normal, Bacterial Leaf Streak, Dead Hearth, Hispa

Bacterial Leaf Blight, Blast, Brown Spot, Downy Mildew, Bacterial Panicle Blight, and Tungro).

The example image used in this research is as shown in the picture below:

Image

a) Normal

Image

b) Brown Spot

Image

c) Bacterial leaf

blight

Image

d) Blast

Image

e) Tungro

Figure 5. Example of Rice Leaf Disease Image

Each class is provided with representative images to train and evaluate the performance

of the disease detection model. For example, the Normal class includes images of healthy rice

leaves with no signs of disease, while the Bacterial Leaf Blight class contains images of leaves

with typical brown spot symptoms. The images in the dataset show variations in pattern, color,

and intensity of symptoms, ensuring that the dataset covers the diversity of leaf conditions found

in the field.

The following visual illustration of some of the images used for each class. These images

provide a real picture of the difference in characteristics between the disease and normal classes,

which is the basis for the model to learn to recognize relevant patterns. Table 1 shows example

images for each of the 10 labels.

Table 1. Dataset from Kaggle

No. Name of disease Number of

Original

Datasets

Number of

Testing

Datasets

Number of

Training

Datasets

Number of

Validation

Datasets

1 Normal 1764 89 1411 264

2 Bacterial leaf blight 479 25 383 71

3 Bacterial leaf streak 380 19 304 57

4 Bacterial panicle blight 337 18 269 50

5 Blast 1738 88 1390 260

6 Brown spot 965 49 772 144

7 Dead hearth 1442 73 1153 216

8 Downy mildew 620 31 496 93

9 Hispa 1594 80 1275 239

10 Tungro 1088 55 870 163

Total Number of Diseases

= 10

Original

Dataset

= 10.407

Dataset

Testing

= 527

Traning Dataset

= 8.323

Dataset Validation

= 15.557

© Abdul Azis, Abdul Fadlil, Tole Sutikno

512

3.2 Dataset Split

Furthermore, the dataset is split into three main datasets: TrainingValidation, and

Testing. The training data covers 80% of the total 10,407 dataset, is 8,323 images used to

train the model. Meanwhile, the validation data, which amounted to 1,557 images

constituting 15% of the total dataset, was used to monitor the model's performance during

training. The testing data consisted of 527 images which constituted 5% of the dataset and

was used to measure the model’s accuracy after the training was completed. This division

aims to ensure that the model can learn well without overfitting.

3.3 Model Architecture and Transfer Learning

The CNN model is applied using a customized EfficientNet architecture to classify

rice leaf diseases. The training process is performed by setting the initial learning rate at

0.1, with learning rate adjustments every epoch to improve training accuracy and

stability. The optimizer uses the Stochastic Gradient Descent (SGD) method with a

momentum of 0.9, which helps accelerate convergence and reduce fluctuations during

the training process. The number of iterations is 100 epochs to provide an opportunity for

the model to update parameters (weights and biases) and improve accuracy and reduce

errors. The experimental results show that applying an appropriate learning rate can

significantly improve the performance of the model.

At this stage the layers in the Convolutional Neural Network (CNN) are

integrated with EfficientNet which consists of:

1. Input Layer: The image is input into the network.

2. EfficientNet Block: This section applies compound scaling settings (depth, width, and

resolution adjustments).

3. Convolutional Layers: Feature extraction using filters.

4. Pooling Layers: Lower the resolution of features to reduce dimensions.

5. Fully Connected Layer: Combines features to produce the final output.

6. Output Layer: The result of the network's classification or prediction.

3.4 Performance Evaluation

In the evaluation stage, model performance is measured using the model

confusion matrix (CM) which is divided into four main parts: CM True Positive (TP), CM

True Negative (TN), CM False Positive (FP), and CM False Negative (FN). The

explanations of TP, TN, FP and FN in this study are as follows:

1. True Positive (TP): The number of images that are actually detected as a disease

corresponding to the correct class. For example, an image of a rice leaf that is indeed

infected with a disease and the model also identifies it as that disease.

2. True Negative (TN): The number of images that are truly not infected with the disease,

and the model also classifies them as healthy.

© Abdul Azis, Abdul Fadlil, Tole Sutikno

513

3. False Positive (FP): The number of images that are actually healthy, but the model

classifies them as disease-infected (type I error).

4. False Negative (FN): The number of images that are actually infected with the disease,

but the model misclassifies them as healthy (type II error).

The following is the confusion matrix generated by the model which in this study

consists of 10 classes:

Table 2. Testing Dataset
Class

Name

bacteri

al leaf

blight

Bacterial

leaf

streak

Bacterial

panicle

blight

blast Brown

spot

Dead

heart

Downy

mildew
hispa normal tungro TRUE FALSE

bacterial

leaf

blight

25 0 0 0 0 0 0 0 0 0 25 0

Bacterial

leaf

streak

0 18 0 1 0 0 0 0 0 0 18 1

Bacterial

panicle

blight

0 0 18 0 0 0 0 0 0 0 18 0

blast 0 0 0 88 0 0 0 0 0 0 88 0

Brown

spot

0 0 0 0 49 0 0 0 0 0 49 0

Dead

heart

0 0 0 0 0 72 1 0 0 0 72 1

Downy

mildew

0 0 0 3 0 0 28 0 0 0 28 3

hispa 0 0 0 1 0 0 0 78 1 0 78 2

normal 0 0 0 0 0 0 0 0 89 0 89 0

tungro 0 0 0 0 0 0 1 0 0 54 54 1
SUBTO

TAL
519 8

TOTAL 527

Based on the confusion matrix, it can be seen that the TP value for each class is

bacterial leaf blight 25, bacterial leaf streak 18, bacterial panicle blight 18, blast 88, brown

spot 49, dead hearth 72, downy mildew 28, hispa 78, normal 89 and tungro 54 as shown

in the diagonal confusion matrix above. This shows that from all the testing data used to

test the model, most of the data is predicted correctly, resulting in a high TP value from

the total testing data. By using the values generated in the confusion matrix, the

percentage level for each measurement parameter is then obtained as follows.

𝐴𝑘𝑢𝑟𝑎𝑠𝑖 =
521

527
= 0,9886 𝑎𝑡𝑎𝑢 98,86%

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =
521

521 + 0
= 1 𝑎𝑡𝑎𝑢 100%

𝑅𝑒𝑐𝑎𝑙𝑙 =
521

521 + 3
= 0,9942 𝑎𝑡𝑎𝑢 99,42%

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 1 × 0,9942

1 + 0,9942
= 0,9970 𝑎𝑡𝑎𝑢 99,70%

Based on the calculation for each measurement parameter used, it can be seen that

the accuracy rate obtained is 98.86%, precision is 100%, recall is 99.42% and F1-Score is

99.70%. This shows that the performance of the CNN algorithm using Transfer Learning

© Abdul Azis, Abdul Fadlil, Tole Sutikno

514

EfficientNet is able to provide excellent performance on disease identification in rice plant

images.

4. Conclusion

In this research, the Convolutional Neural Network (CNN) method using

Transfer Learning is applied in identifying various types of rice leaf diseases using a

dataset of rice leaf images. The CNN model implemented, after going through an

optimization process with EfficientNet, showed excellent performance results in

processing and classifying images of rice leaf diseases.

The model evaluation results show a global accuracy of 98.86%, with Micro

Precision, Micro Recall, and Micro F1-Score results of rice leaf diseases reaching 100%,

99.42%, and 99.70%. This shows that the CNN model applied with augmentation and

transfer learning techniques is able to recognize diseases in rice leaves with a very low

error rate, even on varied datasets.

Overall, this research shows that the use of transfer learning on CNN architecture,

with effective data augmentation, can produce highly accurate models for plant disease

image classification, which can be applied in an automated rice disease detection system.

References

[1] IRRI, "Enriching Rice-Based Economies: SOUTHEAST ASIA, SOUTH ASIA, & AFRICA."

2018.

[2] S. Shekhar, D. Sinha, and A. Kumari, "An Overview of Bacterial Leaf Blight Disease of Rice

and Different Strategies for its Management," vol. 9, no. 4, pp. 2250-2265, 2020.

[3] J. Li et al., "An Interpretable High-Accuracy Method for Rice Disease Based on Multisource

Data and Transfer Learning," Plants, vol. 12, no. 18, pp. 1-22, 2023.

[4] A. Jafar, N. Bibi, and R. A. Naqvi, "Revolutionizing agriculture with artificial intelligence:

plant disease detection methods, applications, and their limitations," Front. Plant Sci., vol.

15, no. March, pp. 1-20, 2024, doi: 10.3389/fpls.2024.1356260.

[5] B. Tugrul, E. Elfatimi, and R. Eryigit, "Convolutional Neural Networks in Detection of

Plant Leaf Diseases: A Review," agriculture, vol. 12, no. 8, 2022.

[6] M. M. Taye, "Theoretical Understanding of Convolutional Neural Network: Concepts,

Architectures, Applications, Future Directions," Computation, vol. 11, no. 3, pp. 1-23, 2023.

[7] A. W. Salehi, S. Khan, G. Gupta, B. I. Alabduallah, and A. Almjally, "A Study of CNN and

Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,"

sustainability, vol. 15, no. 7, pp. 1-28, 2023.

[8] Z. Kelta, "An Introduction to Convolutional Neural Networks (CNNs)," datacamp, 2023.

https://www.datacamp.com/tutorial/introduction-to-convolutional-neural-networks-

cnns.

[9] T. Wiatowski and H. Bolcskei, "A Mathematical Theory of Deep Convolutional Neural

Networks for Feature Extraction," IEEE Trans. Inf. Theory, vol. 64, no. 3, 2018.

[10] Y. Yu, K. Adu, N. Tashi, P. Anokye, X. Wang, and M. A. Ayidzoe, "RMAF: ReLU-

Memristor-like Activation Function for Deep Learning," IEEE Access, vol. 1, no. 1, 2020,

© Abdul Azis, Abdul Fadlil, Tole Sutikno

515

doi: 10.1109/ACCESS.2020.2987829.

[11] D. Hartmann, D. Franzen, and S. Brodehl, "Studying the Evolution of Neural Activation

Patterns During Training of Feed-Forward ReLU Networks," Front. Artif. Intell., vol. 4, no.

1, pp. 1-13, 2021, doi: 10.3389/frai.2021.642374.

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A

Simple Way to Prevent Neural Networks from Overfitting," J. Mach. Learn. Res., vol. 15,

pp. 1929-1958, 2014.

[13] Y. Fu, "Image classification via fine-tuning with EfficientNet," Keras, 2023.

https://keras.io/examples/vision/image_classification_efficientnet_fine_tuning/#image-

classification-via-finetuning-with-efficientnet.

[14] S. K. Agrawal, "Metrics to Evaluate your Classification Model to take the right decisions,"

Analytics Vidhya, 2024. https://www.analyticsvidhya.com/blog/2021/07/metrics-to-

evaluate-your-classification-model-to-take-the-right-decisions/.

[15] V. V. Kumar, "Evaluating machine learning models-metrics and techniques," AI Accelerator

Institute, 2024. https://translate.google.com/?sl=id&tl=en&text=evaluasi

performance&op=translate.

