Vehicle Type Detection and Classification System To Determine Parking Rates Based On Image Recognition

##plugins.themes.academic_pro.article.main##

Suhartono
Satria Gunawan Zain
Nuraeni Nasir

Abstract

This study aims to develop a system for detecting and classifying vehicle types using the Convolutional Neural Network (CNN) model YOLO V5 based on image recognition. This research consists of several stages, from the potential and problem stages, needs analysis, literacy studies, prototyping, system design, and system testing. The collected datasets were taken using smartphone cameras and webcams with a total of 800 image datasets, divided into two categories: training data and validation data. System testing is carried out in day and night conditions. The classification test results in daytime conditions obtained an accuracy of 93, an accuracy of 80%. The system's design for detecting and classifying vehicle types for determining parking rates based on image recognition works well. Each type of vehicle can be seen and ranked by the system.

##plugins.themes.academic_pro.article.details##

How to Cite
Suhartono, Satria Gunawan Zain, & Nasir, N. (2023). Vehicle Type Detection and Classification System To Determine Parking Rates Based On Image Recognition. Jurnal E-Komtek (Elektro-Komputer-Teknik), 7(2), 374-388. https://doi.org/10.37339/e-komtek.v7i2.1221

References

[1] F. Syarifuddin, 2017. Kebutuhan ruang parkir pada rumah sakit bhayangkara di kota Makassar. Univeristas Islam Alauddin Makassar.
[2] Winarko.2019.Evaluasi kinerja mini pc dengan algoritma alpr studi kasus: deteksi plat mobil.Universitas Hasanuddin.
[3] I. F. Ashari, M. D. Satria, and M. Idris.2022.Parking System Optimization Based on IoT using Face and Vehicle Plat Recognition via Amazon Web Service and ESP-32 CAM(Case Study: Institut Teknologi Sumatera). Comput. Eng. Appl., vol. 11, no. 2.
[4] Elsa. 2022. Penerapan image recognition pada aplikasi pengenalan bumbu dapur dengan augmented reality berbasis unity android di bagansiapiapi kabupaten rokan hilir.STMIK Amik Riau.
[5] M. Irfan, B. A. A. Sumbodo, and I. Candradewi.2017. Sistem Klasifikasi Kendaraan Berbasis Pengolahan Citra Digital dengan Metode Multilayer Perceptron. J. IJEIS, vol. 7, no. 2.
[6] A. Lazaro, “Deteksi Jenis Kendaraan di Jalan Menggunakan OPENCV.2017.Institut Teknologi Sepuluh Nopember, 2017.
[7] D. J. P. Manajang, S. R. U. A. Sompie, and A. Jacobus.2020.Implementasi Framework Tensorflow Object Detection Dalam Mengklasifikasi Jenis Kendaraan Bermotor,. J. Tek. Inform., vol. 15, no. 3, 2020.
[8] Suryansah, A., Habibi, R., & Awangga, R. M.2020. Penggunaan Face Recognition untuk akses ruangan. Kreatif.
[9] Suhartono, S., Zain, S. G., & Sugiawan, S.2022. Sistem Object Recognition Plat Nomor Kendaraan Untuk Sistem Parkir Bandara. Journal of embedded system security and inteligent system.
[10] Amwin, A.2021. Deteksi dan klasifikasi kendaraan berbasis algoritma You Only Look Once (YOLO). . International Journal of Environment, Engineering and Education, 4(2).

DB Error: Unknown column 'Array' in 'WHERE'