Classification of Breast Cancer Magnetic Resonance Imaging (MRI) Using Convolutional Neural Network (CNN) with VGG19 and AlexNet Architecture

##plugins.themes.academic_pro.article.main##

Herman Bedi Agtriadi
M Habibi
Zakiyah Misfazilah

Abstract

Breast cancer is the most common cancer globally with a malignant category that poses a serious and frightening threat to women. According to data from Globocan. In Indonesia alone in 2022 the number of new cases of breast cancer reached 66,271 cases, thus contributing (30,1.6%) of the total cancer cases in Indonesia. Of the cases with more than 22 thousand deaths, breast cancer is the second most deadly cancer. 70% of breast cancer cases are detected already at an advanced stage, where this case can occur due to delays in medical personnel who have not been able to detect breast cancer manually. This requires technology to help doctors and radiologists to evaluate Magnetic Resonance Imaging (MRI) images automatically. One of the deep learning methods useful for MRI image analysis is Convolutional Neural Network (CNN) using VGG19 and AlexNet architecture which has been proven in the classification process. This study uses data from Kaggle with a total of 1400 data. Through the use of the Convolutional Neural Network method, this study obtained a fairly optimal accuracy on the VGG19 architecture of 99% and on the AlexNet Architecture of 97%.

##plugins.themes.academic_pro.article.details##

How to Cite
Herman Bedi Agtriadi, M Habibi, & Zakiyah Misfazilah. (2025). Classification of Breast Cancer Magnetic Resonance Imaging (MRI) Using Convolutional Neural Network (CNN) with VGG19 and AlexNet Architecture. Jurnal E-Komtek, 9(1), 26-41. https://doi.org/10.37339/e-komtek.v9i1.2501

References

[1] E. Farijki and B. K. Triwijoyo, “Segmentasi Citra Mri Menggunakan Deteksi Tepi,” J. Matrik, vol. 16, no. 2, pp. 17–24, 2017.
[2] R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” J. IT, vol. 11, no. 3, pp. 55–59, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index.
[3] M. Lestandy, “Deteksi Dini Kanker Payudara Menggunakan Metode Convolution Neural Network (CNN),” Inspir. J. Teknol. Inf. dan Komun., vol. 12, no. 1, p. 65, 2022, doi: 10.35585/inspir.v12i1.2667.
[4] H. Akbar and S. Sandfreni, “Klasifikasi Kanker Serviks Menggunakan Model Convolutional Neural Network Alexnet,” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 1, pp. 44–51, 2021, doi: 10.33387/jiko.v4i1.2606.
[5] Z. Hameed, S. Zahia, B. Garcia-Zapirain, J. J. Aguirre, and A. M. Vanegas, “Breast cancer histopathology image classification using an ensemble of deep learning models,” Sensors (Switzerland), vol. 20, no. 16, pp. 1–17, 2020, doi: 10.3390/s20164373.
[6] Darmatasia and M. Syafar, “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TANAMAN RIMPANG SECARA VIRTUAL,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 6, no. 2, pp. 666–670, 2023, doi: 10.31539/intecoms.v6i2.6634.
[7] D. Gunawan and H. Setiawan, “Convolutional Neural Network dalam Citra Medis,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 2, no. 2, pp. 376–390, 2022, doi: 10.24002/konstelasi.v2i2.5367.
[8] A. Satyo, B. Karno, W. Hastomo, Y. Efendi, D. Diyah, and R. Irawati, “Konferensi Nasional Ilmu Komputer (KONIK) 2021 Arsitektur Alexnet Convolution Neural Network (CNN) Untuk Mendeteksi Covid-19 Image Chest-Xray,” Konf. Nas. Ilmu Komput., vol. 5, no. 1, pp. 482–485, 2021, [Online]. Available: https://prosiding.konik.id/index.php/konik/article/view/105.
[9] F. A. A. Harahap, R. M. Sinaga, K. Arifin, and K. S, “Implementasi Algoritma Convolutional Neural Network Untuk Mendeteksi Penyakit Ginjal Implementation of Convolutional Neural Network for Detecting Kidney Disease,” Teknol. Informasi, Komput. dan Apl., vol. 4, no. 2, pp. 212–219, 2022, [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/.
[10] T. Sulistyorini, E. Sova, N. Sofie, and R. I. Napitupulu, “Penerapan Hyperparameter Convolutional Neural Network (Cnn) Dalam Membangun Model Segmentasi Gambar Menggunakan Arsitektur U-Net Dengan Tensorflow,” J. Ilm. Inform. Komput., vol. 28, no. 2, pp. 112–121, 2023, doi: 10.35760/ik.2023.v28i2.6959.
[11] S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network _ Ilahiyah _ JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia),” JUSTINDO(Jurnal Sistem & Teknologi Informasi Indonesia), vol. 3, no. 2. pp. 49–56, 2018.
[12] A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, 2020, doi: 10.22441/format.2019.v8.i2.007.
[13] W. Wijaya Kusuma, R. Rizal Isnanto, A. Fauzi, and P. Korespondensi, “DenseNet121 Menggunakan Kerangka Kerja TensorFlow untuk Deteksi Jenis Hewan,” J. Tek. Komput., vol. 1, no. 4, pp. 141–147, 2023, doi: 10.14710/jtk.v1i4.37009.
[14] E. Fernando, S. Surjandy, M. Meyliana, and P. Siagian, “Desain Sistem Pengenalan Varietas Bibit Tanaman Kelapa Sawit dengan Pendekatan Design Science Research Methodology (DSRM),” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, p. 249, 2020, doi: 10.25126/jtiik.2020721456.