Effect of Accelerator Addition on the Drying Time, Thickness and Glossy Clear Coat in Vehicle’s Body

M. Fajar Sidiq, Sultanul Reza Islami, M. Agus Shidiq
Department of Faculty of Mechanical Engineering, Universitas Panca Sakti Tegal, Indonesia, 52121

sultanulreza@gmail.com

https://doi.org/10.37339/e-komtek.v5i1.441

Abstract
Painting is the application of paint in liquid form onto the object, to create a thin layer which is then dried to form a hard layer or layers of paint. Many things are influential in the painting process, including the clear coat process which functions as a gloss effect and protects and maintains the paint color of the vehicle. In this research, it was expected to know the effect of the ratio between the thinner and accelerator on the clear coat on drying time, thickness, and glossiness of the clear coat. In this study, the mixture ratio variations of accelerator and thinner used were 0%: 100%, 25%: 75%, 50%: 50%, 75%: 25%. The speeds of drying with the aforementioned ratio of accelerator and thinner were 28 mins, 24 mins, 18 mins, and 16 mins respectively, while the values of the thickness of the ratio were 53, 4 µm, 55.6 µm, 54.03 µm, and 57.1 µm respectively, and the glossiness values of the accelerator and thinner with the ratio were 96.1 Gu, 95.4 Gu, 92.5 Gu, and 93.1 Gu respectively.

Keywords: Accelerator, Thinner, Drying time, Thickness, Glossy

Abstrak
Melukis adalah pengaplikasian cat dalam bentuk cair pada objek, untuk membuat lapisan tipis yang kemudian dikeringkan untuk membentuk lapisan atau lapisan cat yang keras. Banyak hal yang berpengaruh dalam proses pengecatan, diantaranya adalah proses clear coat yang berfungsi sebagai efek kilap dan melindungi serta mempertahankan warna cat kendaraan. Dalam penelitian ini diharapkan dapat diketahui pengaruh perbandingan thinner dan akselerator pada clear coat terhadap waktu pengeringan, ketebalan, dan kilap clear coat. Pada penelitian ini, variasi rasio campuran akselerator dan thinner yang digunakan adalah 0% : 100%, 25% : 75%, 50% : 50%, 75% : 25%. Kecepatan pengeringan dengan perbandingan akselerator dan pengencer tersebut masing-masing adalah 28 menit, 24 menit, 18 menit, dan 16 menit, sedangkan nilai ketebalan rasio adalah 53, 4 m, 55.6 m, 54.03 m, dan 57,1 m, dan nilai glossiness dari akselerator dan thinner dengan perbandingan masing-masing adalah 96,1 Gu, 95,4 Gu, 92,5 Gu, dan 93,1 Gu.

Kata-kata kunci: Akselerator, Tipis, Waktu pengeringan, Ketebalan, Glossy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. Introduction

Paint is a liquid that is used to coat the surface of objects to decorate, beautify, and protect the surface of objects [1]. Over time, the paint deteriorates in quality, such as discoloration, scratches, or peeling. The damaged part of the paint can cause a decrease in its aesthetic value and if left unchecked, corrosion will damage the metal surface due to the damage to the protective layer, so the paint also needs to be repaired [2].

To repair this damage, it could be done by repainting only the damaged part or the entire surface covered in paint. The painting process can be done in various ways, from the traditional process by ketok magic to the modern processes with robotic assistance [3].

One of the important factors affecting the quality of car paint is the work of a clear coat which functions as a glossy effect and protects and maintains the paint color of the vehicle [4]. Many industrial painting services try things that are considered better in terms of workmanship and economics, such as adding the accelerator to the clear coat process. An accelerator is a substance that accelerates the drying of a clear coat, aiming to speed up the working process so that productivity increases.

Even so, there are not many studies that discuss the use of accelerators in the painting process. Therefore, the authors researched the effect of variations in the comparison of accelerators with thinners in the painting process. Based on the aforementioned description, this study used an accelerator as additional materials in the clear coat process which was tested by testing methods of drying, quality (gloss), and thickness.

2. Method

2.1 Material

a. Paints

Paints are viscous liquids consisting of resins, pigments, solvents, and additive components that are mixed to form a uniform coating [5]. Pigment (dye) cannot mix with water, oil, and even solvents. Therefore, this pigment needs to be mixed with a binder (resin) so that it can stick to the object to be sprayed. The role of the solvent (thinner) is to dilute the properties of the paint mixture.

b. Solvent/Thinner

Solvents are liquids that dissolve the pigment and resin so that the resin can be mixed in the paint. In the mixing, the ratio between the thinner and the paint becomes very important to
be taken into account. The mixture that is too thick or too thin will cause problems in the painting process and its results. When spraying the paint, if the mixture is too thick, the result is rough because the paint cannot flow properly. On contrary, if the mixture is too liquid, it flows too easily and results in a melting effect, and the paint dries quickly [6].

c. Clear Coat

A clear coat is the top layer of vehicle paint. The goal is to increase the resistance of base coat environmental and scratches and to give the desired finish, such as a high gloss appearance or matt effect (no shine).

Basically, in the process of painting, there is no standardized comparison between the varnish thinners, it depends on each operator to determine the ratio of paint, but the composition affects many things including the level of viscosity, the coating process, the consumption in terms of financing, and gloss of the paint.

d. Accelerators

Without raising the concentration or temperature of the reaction, the reaction rate can be accelerated by providing catalysts or other substances. This substance is called an accelerator. Accelerators can speed up the reaction, but no permanent chemical changes that will occur, so that the substance can be recovered at the end of the reaction [7].

Catalyst is added to paint to speed up the drying and hardening. They include drying agents (desiccants, siccative), which in the case of air-drying binders (including some unsaturated alkyd resins or oils), accelerate the decomposition of the peroxides and hydroperoxides formed during the drying process [8].

However, the previously done studies rarely used accelerators in the painting process; most of them only relied on drying of the thinner concentration, even though there is no definite mixture ratio based on its use [9] [10]. Therefore, the authors tested the use of an accelerator in the painting process with the ratios of the accelerator and the thinner mixture of 0%: 100%, 25%: 75%, 50%: 50%, 75%: 25% in the Clear Coat process.

2.2 Methods

This study was experimental research, where the researchers controlled the variables and observed their effects on the dependent variable. In this study, the independent variable was the variation of the addition of accelerator and thinner on the implementation of Clear Coat, i.e. 100%: 0%, 25%: 75%, 50%: 50%, and 75%: 25% of the total clear coat. The dependent variables in this study were gloss, thickness, and drying speed.
Control variables used in this study were Standard paint equipment condition, Spray angle was the angle of the standard work, i.e. ± 90 ° with respect to the position of the working field, and Spraying using an automatic compressor with a pressure of 5-8 bar while the air pressure of the spray gun was 2-4 bar.

a. Research Flow Chart

The research process followed a schematic diagram as shown by Figure 1.

![Flowchart Research](image)

Figure 1. Flowchart Research

b. Preparation of Test Specimens

The material used in this painting process was aluminum plate. Material preparation was done by making the test specimens according to the dimensions specified by the specimen as follows: Length = 20 cm; Width = 20 cm; Height = 0.7 cm.

c. Thickness Testing

The purpose of the test was to determine the thickness of the coating on the vehicle body, using CEM Coating Thickness Gauge DT-156. It took a few minutes for the tool to adjust the correct material values to get the thickness values. After the thickness value was correct, then the researchers recorded and analyzed it through experiments 2 to 3 at each point that had been marked for measurement on the same specimen material (1 specimen). Then, the researchers recorded the value and took the average of the 5-result test. In this way, from the obtained average values, the researchers got the thickness of the layer covering the tested material by the
formula:

\[
\text{Thickneas of clearcoat} = \frac{\text{total thickness of base paint and clearcoat}}{\text{thickness of paint (basecoat)}}
\] ...

In the thickness testing process, each board was divided into 5 test points, then the average value of each board was taken to plot the test points on each board as \textbf{Figure 2}.

\textbf{Figure 2.} Thickness Testing Area

Coating thickness gauge presented in the \textbf{Figure 3}.

\textbf{Figure 3.} Coating Thickness Gauge

1) Glossy Test

Gloss test was conducted to find out the results of a quality value of gloss clearcoat layer, this test used a measuring instrument Glossmeter. The researchers divided the result of painting each board into a 3-point gloss test, then took the average value of each test points on the board so that each board painting results are as \textbf{Figure 4}.

\begin{tabular}{|c|c|c|}
\hline
Point Measurement 1 & Point Measurement 2 & Point Measurement 3 \\
\hline
\end{tabular}

\textbf{Figure 4.} Test Point on The Plate Gloss Paintwork

The researchers used Glossmeter YG60S 600 models presented in the \textbf{Figure 5}.

\textbf{Figure 5.} Glossmeter

\[\text{Glossmeter YG60S 600 models} \]
2) **Drying Speed Test**

In the drying proceeds from the painting process to adjust on the type of paint used, the method of drying itself was divided into [11]:

a) **Drying Oven**

The researchers used special paint booths equipped with a heater (oven) to accelerate the paint dries. The heat source provided by the oven were obtained from heating from electricity or from combustion [12].

b) **Non-oven drying**

It is a drying process without the use of an oven or for drying paint: the paint dried itself in normal air conditions (normal air). To do this, dry the paint on the outside air temperature of ±25°C-30°C. Drying without tools is usually carried out in a well-ventilated area.

The drying time of the paint varies from one brand to another and it is usually up to the paint manufacturer to consider the factors involved in achieving the perfect drying condition. For example, if dust is no longer stuck to the surface that is sprayed (dust-free), then it is a dust-free drying time which usually takes 0.5 hours, track-free (no trace), no stickiness even when pressed is achieved within 3 hours, dry if dry enough for hand-fitting is achieved within 12 hours, and hard dry if it is hard enough for some other operations it takes 20 hours [13]. For the drying time of the paint, many factors influence it, such as the quality of the paint, room temperature, thinner, and the paint layer used. Drying paint indicator can be seen in the **Figure 6**.

![Figure 6. Drying Paint Indicator [14]](image)

The researchers used the adhesion-free category in this test.

Drying speed = End Time - Initial Time (2)

The clear coat is not dry but adhesion-free can be seen in the **Figure 7**.

![Figure 7. The Clear Coat is not Dry but Adhesion-Free](image)
The clear coat has dried adhesion free can be seen in the Figure 8.

Figure 8. The Clear Coat Has Dried Adhesion

3. Results and Discussion

The research process was carried out in a painting room with a room temperature of 36°C. This research was conducted to obtain the results of testing the effect of adding an accelerator in the clear coat process with a mixture variation between the accelerator and the thinner, following the variation of the mixture 0%: 100%, 25%: 75%, 50%: 50%, 75%: 25%, then comparing the mixture variation results with the best specimens that can be used as a reference or accelerator mixing formula.

a. Drying Speed Test Results

The following are the results of the clear coat drying speed test with variations in the addition of an accelerator. Data of clear coat drying time presented in the Table 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Specimen</th>
<th>Finish Time Process</th>
<th>Sticky Free Dry Time</th>
<th>Total Drying Time</th>
<th>Average Drying Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Clear coat T1 (minute)</td>
<td>T2 (minute)</td>
<td>∆T (minutes)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>13:48</td>
<td>14:16</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>13:48</td>
<td>14:16</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>13:48</td>
<td>14:16</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>B1</td>
<td>14:32</td>
<td>14:56</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>14:32</td>
<td>14:56</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>14:32</td>
<td>14:56</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>C1</td>
<td>15:18</td>
<td>15:36</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>15:18</td>
<td>15:36</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>15:18</td>
<td>15:36</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>16:00</td>
<td>16:16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>16:00</td>
<td>16:16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td>16:00</td>
<td>16:16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Note: A= Full Thinner 100%
B=Thinner 75% Accelerator 25%
C=Thinner 50% Accelerator 50%
D=Thinner 25% Accelerator 75%
Drying speed test results on additional accelerator clear coat with a variation of a mixture of 100%: 0% thinner and accelerator resulted in the average value of the speed of drying time of 28 minutes. And variations in the mixture 75%: 25% thinner and accelerator resulted in the average value of the speed of drying time of 24 minutes. Meanwhile, variations mixture of 50%: 50% thinner and accelerator resulted in the average value of the speed of drying time of 18 minutes. Then, variations mixture of 25%: 75% thinner and accelerator resulted in the average value of the speed of drying time of 16 minutes. Graph of drying speed test results presented in the Figure 9.

![Graph of Drying Speed Test Results](image)

Figure 9. Graph of Drying Speed Test Results

On the data above, it can be seen that the variation of the thinner and accelerator mixture with the longest clear coat drying speed is 100%: 0% with the required time of 28 minutes, while with the variation of the thinner and accelerator mixture 25%: 75% the fastest clear coat drying speed namely with a drying time of 16 minutes, in this case in accordance with the purpose of adding an accelerator that the more accelerators, the faster the drying speed.

a. Clear Coat Thickness Testing Results

The thickness test itself was carried out in order to find out whether the variation of the mixture with the addition of the accelerator affects the thickness value of the clear coat. The following is the measurement result of clear coat thickness from the variation of accelerator additions. Base paint thickness data presented in the Table 2.
Table 2. Base Paint Thickness Data

<table>
<thead>
<tr>
<th>No</th>
<th>Specimens</th>
<th>Measuring point</th>
<th>The average point Measurement (µm)</th>
<th>Average Thickness of Base Paint (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1 (µm)</td>
<td>2 (µm)</td>
<td>3 (µm)</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>25,1</td>
<td>26,4</td>
<td>26,3</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>22,1</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>29,4</td>
<td>35,9</td>
<td>29,4</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>31,6</td>
<td>24,3</td>
<td>24,2</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>27,7</td>
<td>22,1</td>
<td>33,7</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>27</td>
<td>22,1</td>
<td>24,5</td>
</tr>
<tr>
<td>2</td>
<td>C1</td>
<td>26,5</td>
<td>24,1</td>
<td>34,3</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>35,5</td>
<td>34,3</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>27,4</td>
<td>25,8</td>
<td>30,3</td>
</tr>
<tr>
<td>3</td>
<td>D1</td>
<td>25,1</td>
<td>15,2</td>
<td>17,7</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>32,5</td>
<td>22,3</td>
<td>27,5</td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td>34,8</td>
<td>22,5</td>
<td>22,6</td>
</tr>
</tbody>
</table>

Thickness measurement data of base paint and clear coat presented in the Table 3.

Table 3. Thickness Measurement Data of Base Paint & Clear Coat

<table>
<thead>
<tr>
<th>No</th>
<th>Specimens</th>
<th>Measuring point</th>
<th>The average point Measurement (µm)</th>
<th>Average Thickness of Base Paint & Clear coat (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1 (µm)</td>
<td>2 (µm)</td>
<td>3 (µm)</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>73</td>
<td>85</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>70</td>
<td>63</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>84</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>85</td>
<td>90</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>94</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>85</td>
<td>73</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>C1</td>
<td>88</td>
<td>79</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>88</td>
<td>79</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>82</td>
<td>82</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>D1</td>
<td>76</td>
<td>65</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>91</td>
<td>74</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td>94</td>
<td>81</td>
<td>87</td>
</tr>
</tbody>
</table>

118
Total clear coat thickness data presented in the Table 4.

Table 4. Total Clear Coat Thickness Data

<table>
<thead>
<tr>
<th>No</th>
<th>Specimens</th>
<th>Base Paint & Clear coat thickness (t2) (µm)</th>
<th>Base Paint Thickness (t1) (µm)</th>
<th>Clear Coat Thickness (t2–t1) (µm)</th>
<th>Total average Clear coat Thickness (∆t) (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>77</td>
<td>25,1</td>
<td>51,9</td>
<td>53,4</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>74</td>
<td>22,7</td>
<td>51,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>89,6</td>
<td>32,7</td>
<td>56,9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B1</td>
<td>81,8</td>
<td>28,1</td>
<td>53,7</td>
<td>55,6</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>88,2</td>
<td>31,1</td>
<td>57,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>83,2</td>
<td>27,2</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C1</td>
<td>85,2</td>
<td>30,1</td>
<td>55,1</td>
<td>54,03</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>85,2</td>
<td>33</td>
<td>52,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>83,2</td>
<td>28,4</td>
<td>54,8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>76,6</td>
<td>22,5</td>
<td>54,1</td>
<td>57,1</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>86</td>
<td>29,9</td>
<td>56,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td>89</td>
<td>28</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Note: A= Full Thinner 100 %
B=Thinner 75 % Accelerator 25 %
C=Thinner 50 % Accelerator 50 %
D=Thinner 25 % Accelerator 75 %

Table 2, Table 3, and Table 4 above show the measurement results of the thickness of the base paint layer and the total layer of the base coat with clear coat and the thickness of the clear coat. This is done to make it easier to find the value of the thickness of the clear coat.

The results of the clear coat thickness test with the addition of an accelerator with a mixture variation of 100%: 0% thinner and accelerator resulted in an average thickness value of 53.4 µm, a mixture variation of 75%: 25% thinner and accelerator resulted in an average thickness value of 55.6 µm., the variation of the 50%: 50% thinner and accelerator mixture produces an average thickness value of 54.03 µm. And the variation of the mixture 25%: 75% thinner and accelerator produces an average thickness value of 57.1 µm. Diagram of clear coat thickness test results presented in the Figure 10.
Based on the data, the variation of the thinner and accelerator mixture with the lowest clear coat thickness value is 100%: 0% with a thickness value of 53.4 µm, while with the variation of the thinner and accelerator mixture 25%: 75% the thickness value is the thickest clear coat, 57.1 µm, in this case the addition of an accelerator to the clear coat process greatly affects the thickness of the clear coat. The more accelerators are added, the thicker the clear coat is, because the amount of thinner is less and affects the viscosity of the clear coat.

b. Glossy test results

The test was carried out to determine the variation of the mixture of accelerator additions which affected the glossy value of the clear coat. The testing used a Glossmeter (Gu) measuring instrument. Below are the results of measurement variation shimmer clear coat with the addition of accelerator. Data On the Glossy Test Results of Clear Coat presented in the Table 5.

Table 5. Data On the Glossy Test Results of Clear Coat

<table>
<thead>
<tr>
<th>No</th>
<th>Specimens</th>
<th>Measuring point</th>
<th>The average point Measurement</th>
<th>Total Average glossy Clear Coat (Gu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>92 94 95</td>
<td>93,7</td>
<td>96,1</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>97 97 95</td>
<td>96,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>97 99 99</td>
<td>98,3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B1</td>
<td>95 94 94</td>
<td>94,3</td>
<td>95,4</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>97 96 96</td>
<td>96,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>95 95 97</td>
<td>95,7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C1</td>
<td>86 94 86</td>
<td>88,7</td>
<td>92,5</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>92 95 94</td>
<td>93,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>96 95 94</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>93 91 87</td>
<td>90,3</td>
<td>93,1</td>
</tr>
<tr>
<td></td>
<td>D2</td>
<td>96 90 92</td>
<td>92,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D3</td>
<td>96 96 97</td>
<td>96,3</td>
<td></td>
</tr>
</tbody>
</table>

Note:
A = Full Thinner 100%
B = Thinner 75% Accelerator 25%
C = Thinner 50% Accelerator 50%
D = Thinner 25% Accelerator 75%
The results of the clear coat glossy test with a mixture variation of 100%:0% thinner and accelerator produce an average glossy value of 96.1 Gu, a mixture variation of 75%:25% thinner and accelerator produces an average glossy value of 95.4 Gu, mixed variations 50%:50% thinner and accelerator get an average glossy value of 92.5 Gu. While the variation of the mixture 25%:75% thinner and accelerator produces an average glossy value of 93.1 Gu. Diagram of clear coat glossy test results presented in the Figure 11.

![Glossy Clear Coat](image)

Figure 11. Diagram of Clear Coat glossy Test Results

In Figure 11, it can be observed that the variation of thinner and accelerator mixture with the highest clear coat shine value is 100%:0% with a shine value of 96.1 Gu, while with a mixture of thinner and accelerator 25%:75% get the lowest clear coat gloss value of 93.1 Gu.

Thus, the addition of an accelerator to the clear coat process has an effect on the glossiness of the clear coat. The more accelerator is added, the clear coat decreases the gloss value, this is due to the faster drying process. However, this value is still within the standard luster limit for paint, which is above 70 Gu.

4. **Conclusion**

Based on the research’s results, analysis, and discussion on the effect of adding an accelerator to the clear coat process on drying time, thickness, and gloss of the clear coat on the vehicle body, the following conclusions were drawn:

a. The comparison of the best thinner and accelerator mixture variations for the clear coat drying process was 25%:75% because it had the fastest drying speed of 16 minutes, the ratio of variations in the mixture was very suitable because the more accelerator is added, the faster the clear coat drying process.

b. The best thickness level obtained in the test was in the ratio of variations in the mixture of thinner and accelerator 25%:75% with a thickness value of 57.1 µm. So, it can be concluded
that the addition of an accelerator did not only increase the drying speed of the clear coat but also the thickness of the clear coat.

c. The addition of the accelerator to the glossy clear coat resulted in 93.1 Gu at a ratio of 100%:0% thinner and accelerator variations, where adding the accelerator blend caused a decrease in the gloss value. However, the decrease was still within the standard limit of the glossy value of the clear coat for paint, which was above 70 Gu.

d. The test results showed that the variation of the accelerator and thinner mixture ratio of 75%:25% can best be used in the vehicle body painting process.

References