The Implementation of the CNN Method on Smart Image Recognition and Identification of Heritage (SIRIH) of Sundanese Traditional Tools

##plugins.themes.academic_pro.article.main##

Hendra Jatnika
Yudhi Setyo Purwanto
Mochamad Farid Rifai

Abstract

Sundanese is a regional language in West Java. Young people rarely use local languages, so they need to be preserved by using technology. Image processing technology can help the process of strengthening the Sundanese language and culture. Researchers developed Sundanese traditional tools because their existence is not only related to Sundanese language and terms, but also related to philosophy and local wisdom values. This application is called Smart Image Recognition and Identification of Heritage (SIRIH). The development of this android-based innovative application is based on image recognition technology with the CNN method. Based on the test results, the classification accuracy of pre-trained CNN is 98%, and val accuracy at 86%. Accuracy test results on the application show good and maximum results (90%-100%) if the item is in sufficient light, both indoors and outdoors, while dim light will reduce accuracy to around 60%-70%. Blurred images also affect accuracy by up to 50%.

##plugins.themes.academic_pro.article.details##

How to Cite
Jatnika, H., Yudhi Setyo Purwanto, & Mochamad Farid Rifai. (2023). The Implementation of the CNN Method on Smart Image Recognition and Identification of Heritage (SIRIH) of Sundanese Traditional Tools. Jurnal E-Komtek (Elektro-Komputer-Teknik), 7(2), 211-222. https://doi.org/10.37339/e-komtek.v7i2.1375

References

[1] Pusdatin Kemendikbud, Statistik Kebahasaan dan Kesastraan 2021. 2021.
[2] L. Permesti, “Bahasa Sunda Terancam Punah?,” Republika.co.id, 2013. https://news.republika.co.id/berita/ms4nkw/bahasa-sunda-terancam-punah (accessed Mar. 23, 2023).
[3] I. Herdiana, “Pemakai bahasa Sunda tinggal 43%,” Okezone.com, 2011. https://news.okezone.com/read/2011/11/23/447/533367/pemakai-bahasa-sunda-tinggal-43 (accessed Mar. 25, 2023).
[4] H. H. Sasongko, “Hasil Long Form Sensus Penduduk 2020 Provinsi Jawa Barat,” Bandung, Jawa Barat, 2020. [Online]. Available: https://jabar.bps.go.id/publication/2023/02/10/abb859eca0277bdacbd17faa/hasil-long-form-sensus-penduduk-2020-provinsi-jawa-barat.html.
[5] Jamaludin, Estetika Sunda, 1st ed. Bandung: PT. Dunia Pustaka Jaya: Bandung., 2022.
[6] M. Sasmita, Mengenal Teknologi Tradisional Orang Sunda, 1st ed. Bandung: PT. Dunia Pustaka Jaya: Bandung., 2022.
[7] L. Herlinawati, “HAWU dalam Pandangan Masyarakat Sunda,” Kemendikbud, 2020. https://kebudayaan.kemdikbud.go.id/bpnbjabar/hawu-dalam-pandangan-masyarakat-sunda/ (accessed Mar. 23, 2023).
[8] Pemerintah Republik Indonesia, UU RI No. 24 Tahun 2009 tentang Bendera, Bahasa, dan Lambang Negara serta Lagu Kebangsaan. 2009.
[9] Pemerintah Republik Indonesia, Peraturan Pemerintah Republik Indonesia No. 57 tentang Pengembangan, Pembinaan, Dan Pelindungan Bahasa Dan Sastra, Serta Peningkatan Fungsi Bahasa Indonesia. 2014.
[10] Pemerintah Daerah Kota Bandung, Peraturan Daerah Kota Bandung Nomor 09 Tahun 2012 Tentang Penggunaan, Pemeliharaan Dan Pengembangan Bahasa, Sastra Dan Aksara Sunda. 2012, pp. 1–11.
[11] D. Bandung, “Raperda Pemajuan Kebudayaan Kolaborasikan 11 OPK,” DPRD Kota Bandung, 2022. https://dprd.bandung.go.id/warta/raperda-pemajuan-kebudayaan-kolaborasikan-11-opk (accessed Mar. 23, 2023).
[12] A. Zainab, “Realtime Object Detection on Android using Tensorflow,” no. June 2019, doi 10.5339/qfarc.2018.ictpp417.
[13] H. Kim, J. Kim, and H. Jung, “Convolutional neural network based image processing system,” J. Inf. Commun. Converg. Eng., vol. 16, no. 3, pp. 160–165, 2018, doi:
© Somantri, Kamdan, Azril Mulyana
222
10.6109/jicce.2018.16.3.160.
[14] M. Ramprasath, V. M. Anand, and S. Hariharan, “MNIST Image Classification Using Convolutional Neural Networks,” Smart Innov. Syst. Technol., vol. 292, no. January, pp. 255–266, 2022, doi: 10.1007/978-981-19-0836-1_19.
[15] S. Sachar and A. Kumar, “Automatic plant identification using transfer learning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1022, no. 1, 2021, doi: 10.1088/1757-899X/1022/1/012086.
[16] I. N. G. A. Astawa, M. L. Radhitya, I. W. R. Ardana, and F. A. Dwiyanto, “Face Images Classification using VGG-CNN,” Knowl. Eng. Data Sci., vol. 4, no. 1, p. 49, 2021, doi: 10.17977/um018v4i12021p49-54.

Most read articles by the same author(s)