Design of a NodeMCU-Based Real-Time Air Quality Monitoring System Using the Blynk Application
##plugins.themes.academic_pro.article.main##
Abstract
Currently, air quality monitoring is only through satellites, so this monitor is only general; even though sometimes we need an air quality monitor to measure air quality in the room or gas emissions in motor vehicles and factories, this research uses an MQ135 sensor to measure CO2 gas emissions, a DHT11 sensor to measure humidity and a NodeMCU ESP8266 microcontroller as the central brain. The system is designed to provide accurate and efficient air quality monitoring through the Internet of Things (IoT). They are integrating Blynk as a mobile device monitoring application that offers easy access to real-time air quality data. The Blynk interface allows users to monitor air conditions easily, receive notifications, and access data history. Based on the experimental results and the accuracy of the integrated temperature measurement, the system provides a reliable solution for comprehensive air quality monitoring in various environments.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] I. Sumadikarta, “Rancang Bangun Sistem Peringatan Dini Kualitas Udara Menggunakan Mikrokontroler,” JURNAL SATYA INFORMATIKA, vol. 7, no. 1, pp. 70–77, Aug. 2023, doi: 10.59134/jsk.v7i1.458.
[3] N. I. A, “Perancangan Alat Pemantau Kualitas Udara Berbasis IoT di Perkotaan dan Pedesaan,” pp. 1–15.
[4] F. G. P. Kristiharto and T. Setiawan, “Pusat Edukasi Polusi Serta Lingkungan dan Kantor KLHK Yang Bebas Dari Dampak Polusi Udara Dengan Metode Green Architecture,” Jurnal Sains, Teknologi, Urban, Perancangan, Arsitektur (Stupa), vol. 3, no. 2, p. 1815, Feb. 2022, doi: 10.24912/stupa.v3i2.12373.
[5] B. Nakulo, I. D. Sari, and D. Hariyadi, “Pemantauan Sistem Kualitas Udara Menggunakan Openhab,” Indonesian Journal of Business Intelligence (IJUBI), vol. 3, no. 1, p. 14, Jul. 2020, doi: 10.21927/ijubi.v3i1.1203.
[6] A. Miranto and E. Reynaldi, “Perancangan dan Implementasi Antarmuka Pengguna Sistem Pemantauan Kualitas Udara Berbasis Aplikasi Android,” Cyberspace: Jurnal Pendidikan Teknologi Informasi, vol. 7, no. 1, p. 46, Mar. 2023, doi: 10.22373/cj.v7i1.17491.
[7] A. Pradifan, W. Widayat, and A. Suprihanto, “Pemantauan Kualitas Udara Kota Tegal (Studi Kasus?: Kecamatan Tegal Selatan, Kecamatan Tegal Barat, Kecamatan Tegal Timur),” Jurnal Ilmu Lingkungan, vol. 19, no. 1, pp. 73–82, Apr. 2021, doi: 10.14710/jil.19.1.73-82.
[8] T. W. Setiati, S. E. Febrina, and F. S. Islami, “Investigasi Kualitas Udara Ruang Kelas dengan Perubahan Ventilasi Aktif Menjadi Alami Pasca Pandemi di Daerah Tropis Lembab,” Arsir, vol. 6, no. 2, p. 126, Jan. 2023, doi: 10.32502/arsir.v6i2.5167.
[9] T. V. Damayanti and R. E. Handriyono, “Monitoring Kualitas Udara Ambien Melalui Stasiun Pemantau Kualitas Udara Wonorejo, Kebonsari Dan Tandes Kota Surabaya,” Environmental Engineering Journal ITATS, vol. 2, no. 1, pp. 11–18, Mar. 2022, doi: 10.31284/j.envitats.2022.v2i1.2897.
[10] Sibarani and T. T. Saputra, “Perancangan Prototype Perangkat Keras Dan Perangkat Lunak Monitoring Polusi Udara Di Kota Medan Berbasis Internet Of Things (IOT),” Medan, Apr. 2023.
[11] Arba’i Yusuf, E. P. Nasution, Asni Tafrikhatin, and Ajeng Tiara Wulandari, “Rancang Bangun Alat Pendeteksi Kebocoran Gas LPG Dengan Sensor Mq-6 Berbasis Mikrokontroler Melalui Telegram,” JASATEC?: Journal of Students of Automotive, Electronic and Computer, vol. 2, no. 1, pp. 1–8, Jun. 2023, doi: 10.37339/jasatec.v2i1.1230.
[12] F. H. Mustianto, Asni Tafrikhatin, and Ajeng Tiara Wulandari, “Rancang Bangun Pengatur Suhu Kandang Ayam Otomatis Menggunakan Sensor DHT22 Berbasis Wemos D1 R32 Dengan Keluaran Berupa LCD dan Notifikasi Telegram,” JASATEC?: Journal of Students of Automotive, Electronic and Computer, vol. 2, no. 1, pp. 9–19, Jun. 2023, doi: 10.37339/jasatec.v2i1.1237.