Decision Support System Implementation of Decision Tree Algorithm C4.5 In Employee Performance Assessment
##plugins.themes.academic_pro.article.main##
Abstract
Employee performance assessment can be used as an evaluation tool to improve employee performance to achieve more. Some of the benefits of performance appraisal are such as improving business quality, driving business progress, and improving employee welfare. Yasmin Medical Clinic requires an employee performance appraisal system that can help superiors to process data properly so that it can shorten the time and produce an assessment that is in accordance with the subjective value of decision making. One method that can be used in a decision support system is a decision tree. Current decision trees such as C4.5 and CART are widely used in various fields. The results of the analysis show that the application of the decision support system of the decision tree algorithm c4.5 in employee performance appraisal is able to solve problems at the Yasmin Medical Clinic. A computerized decision support system helps the decision-making process and produces objective decisions that are in accordance with actual conditions.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] J. Liu, “Design and Application of Human resource management system Based on Data Mining Technology,” Procedia Comput. Sci., vol. 228, pp. 241–252, 2023, doi: https://doi.org/10.1016/j.procs.2023.11.028.
[3] A.-S. Ulfert, C. H. Antoni, and T. Ellwart, “The role of agent autonomy in using decision support systems at work,” Comput. Human Behav., vol. 126, p. 106987, 2022, doi: https://doi.org/10.1016/j.chb.2021.106987.
[4] F. Poszler and B. Lange, “The impact of intelligent decision-support systems on humans’ ethical decision-making: A systematic literature review and an integrated framework,” Technol. Forecast. Soc. Change, vol. 204, p. 123403, 2024, doi: https://doi.org/10.1016/j.techfore.2024.123403.
[5] D. Renfrew, V. Vasilaki, and E. Katsou, “Indicator based multi-criteria decision support systems for wastewater treatment plants,” Sci. Total Environ., vol. 915, p. 169903, 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.169903.
[6] M. Akdağ, T. A. Pedersen, T. I. Fossen, and T. A. Johansen, “A decision support system for autonomous ship trajectory planning,” Ocean Eng., vol. 292, p. 116562, 2024, doi: https://doi.org/10.1016/j.oceaneng.2023.116562.
[7] M. M. Ahp-maut, M. D. Irawan, A. C. Amandha, and I. Listiani, “Sistem Pendukung Keputusan dengan Aplikasi Sistem Pendukung Keputusan Pembuatan Properti Kayu Decision Support System for Making Wood Properties Using the AHP-MAUT Method,” vol. 2, no. September, 2023.
[8] I. M. Jiskani, Q. Cai, W. Zhou, X. Lu, and S. A. A. Shah, “An integrated fuzzy decision support system for analyzing challenges and pathways to promote green and climate smart mining,” Expert Syst. Appl., vol. 188, p. 116062, 2022, doi: https://doi.org/10.1016/j.eswa.2021.116062.
[9] E. Devia, “Penerapan Decision Tree Dengan Algoritma C4 . 5 Untuk Menentukan Rekomendasi Kenaikan Jabatan Karyawan,” vol. 3, pp. 28–37, 2023.
[10] D. M. Rodríguez, M. P. Cuéllar, and D. P. Morales, “On the fusion of soft-decision-trees and concept-based models,” Appl. Soft Comput., vol. 160, p. 111632, 2024, doi: https://doi.org/10.1016/j.asoc.2024.111632.
[11] P. Li, F. Xiong, X. Huang, and X. Wen, “Construction and optimization of vending machine decision support system based on improved C4.5 decision tree,” Heliyon, vol. 10, no. 3, p. e25024, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e25024.
[12] L. Shangguan and Z. Sun, “Enhancing data quality and real-time sharing performance in water informatics through decision tree mining algorithm,” Meas. Sensors, vol. 31, p. 101024, 2024, doi: https://doi.org/10.1016/j.measen.2023.101024.
[13] E. F. Siddiqui, T. Ahmed, and S. K. Nayak, “A decision tree approach for enhancing real-time response in exigent healthcare unit using edge computing,” Meas. Sensors, vol. 32, p. 100979, 2024, doi: https://doi.org/10.1016/j.measen.2023.100979.
[14] A. A. Aldino and H. Sulistiani, “DECISION TREE C4 . 5 ALGORITHM FOR TUITION AID GRANT PROGRAM CLASSIFICATION ( CASE STUDY : DEPARTMENT OF INFORMATION SYSTEM , UNIVERSITAS TEKNOKRAT INDONESIA ),” vol. 7, no. 1, pp. 40–50, 2020.
[15] X. Sun, M. J. C. Opulencia, T. P. Alexandrovich, A. Khan, M. Algarni, and A. Abdelrahman, “Modeling and optimization of vegetable oil biodiesel production with heterogeneous nano catalytic process: Multi-layer perceptron, decision regression tree, and K-Nearest Neighbor methods,” Environ. Technol. Innov., vol. 27, p. 102794, 2022, doi: https://doi.org/10.1016/j.eti.2022.102794.
[16] W. Chen, X. Lu, H. Yan, and X. Du, “Decision tree of indicator benchmark: A hybrid method for assessing cities’ performance through urban indicators and benchmark,” Ecol. Indic., vol. 154, p. 110804, 2023, doi: https://doi.org/10.1016/j.ecolind.2023.110804.
[17] M. Przybyła-Kasperek and S. Aning, “Stop Criterion in Building Decision Trees with Bagging Method for Dispersed Data,” Procedia Comput. Sci., vol. 192, pp. 3560–3569, 2021, doi: https://doi.org/10.1016/j.procs.2021.09.129.
[18] N. Siraj and I. Hágen, “Performance management system and its role for employee performance: Evidence from Ethiopian SMEs,” Heliyon, vol. 9, no. 11, p. e21819, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e21819.
[19] K. Sistem, P. Keputusan, P. Pegawai, and B. P. Jakarta, “Jurnal Pendidikan dan Konseling,” vol. 4, pp. 1080–1093, 2022.
[20] A. I. Rizmayanti, N. Hidayati, F. S. Nugraha, and W. Gata, “PENERAPAN DATA MINING UNTUK MEMPREDIKSI KOMPETENSI SISWA MENGGUNAKAN METODE DECISSION TREE ( STUDI KASUS SMK MULTICOMP DEPOK ),” vol. 9, no. 1, pp. 10–18, 2021.
[21] M. F. Ikhsan and S. Nurmiati, “PERANCANGAN PENILAIAN KINERJA PEGAWAI BERBASIS WEB DENGAN METODE RATING SCALE,” vol. 9, no. 1, pp. 1–5, 2020.
[22] O. Provinsi and S. Utara, “1) , 2) , 3 1,” vol. 4, no. 2, pp. 324–332, 2022.
[23] A. Almira and A. Ikhwan, “Implementasi Data Mining Menggunakan Algoritma Fp-Growth pada Analisis Pola Pencurian Daya Listrik,” vol. 6, no. 2, pp. 442–448, 2021.
[24] K. Hafidz, M. D. Irawan, and H. D. Nawar, “Sistem Penginputan Data Bahan Pokok pada Pasar Tradisional Sumatera Utara Berbasis Website di Disperindag Sumut,” 2022.
[25] D. Rahmat, R. Adam, and V. Asih, “Sistem Penilaian Kinerja Karyawan Klinik Indosehat Group 2003 Menggunakan Metode Topsis,” vol. 2, no. 1, pp. 1–10, 2023.
[26] T. Azra, R. Umri, and A. M. Harahap, “SISTEM INFORMASI PEMESANAN NITA WEDDING ORGANIZER DENGAN PENERAPAN CUSTOMER RELATIONSHIP MANAGEMENT BERBASIS WEB,” vol. 4307, no. May, pp. 573–580, 2024.
[27] M. Syahri, R. Damanik, and A. Ikhwan, “Implementasi Metode SAW dan TOPSIS Dalam Sistem Pendukung Keputusan Untuk Seleksi Calon Penegak Saka Bhayangkara,” vol. 5, no. 1, pp. 21–29, 2024, doi: 10.30865/resolusi.v5i1.2106.
[28] P. Ramadhani and M. D. Irawan, “Sistem Pendukung Keputusan dengan Aplikasi Kombinasi Metode WP dan MAUT Dalam Pemilihan Tanaman Anggrek Kualitas Ekspor Combination of WP and MAUT Methods in Export Quality Orchid Plant Selection Based WEB,” vol. 1, no. 1, pp. 1–11, 2022.
[29] S. I. Raisyah and I. Zufria, “TIN : Terapan Informatika Nusantara Sistem Pendukung Keputusan Dalam Menentukan Kelayakan Bantuan Dana Hibah Fasilitas Rumah Ibadah Menggunakan Metode AHP TIN : Terapan Informatika Nusantara,” vol. 5, no. 3, pp. 196–208, 2024, doi: 10.47065/tin.v5i3.5558.
[30] G. Ayu, A. Wijaya, A. Ikhwan, and R. A. Putri, “Sistem Informasi Manajemen Aset Tetap Menggunakan Metode Waterfall,” vol. 3, no. 6, pp. 287–296, 2023.