Phishing Website Detection Using the Decision Tree Algorithm Method
##plugins.themes.academic_pro.article.main##
Abstract
Along with the increasing number of internet users and the rapid development of technology, cyber security threats are becoming more complex, including phishing threats that often cause major losses such as loss of individual or corporate privacy. This study aims to identify phishing websites effectively through the application of machine learning algorithms. The dataset used in this study comes from the UCI learning repository developed by the University of Huddersfield. The research methodology includes the stages of problem identification, Cart algorithm collection, validation, and model evaluation. With this method, the study found that the CART algorithm was able to achieve an accuracy level of 90.5% in detecting phishing sites. These results show cyber security, especially in protecting users from phishing threats, this study is expected to contribute to improving data protection and privacy of internet users, as well as encouraging the application of machine learning technology in a more adaptive cyber security system.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] S. Sekolah, T. Manajemen Informatika, D. Komputer, and W. Utama, “PENELITIAN KOMPARASI ALGORITMA KLASIFIKASI DALAM MENENTUKAN WEBSITE PALSU,” vol. 1, no. 1, pp. 2598–294, 2017, [Online]. Available: http://idsirtii.or.id
[3] D. R. K. Saputra, Y. V. Via, and A. N. Sihananto, “DETEKSI ANOMALI MENGGUNAKAN ENSEMBLE LEARNING DAN RANDOM OVERSAMPLING PADA PENIPUAN TRANSAKSI KEUANGAN,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4910.
[4] A. Susilo Yuda Irawan, N. Heryana, H. Siti Hopipah, D. Rahma Putri, and J. Hs Ronggo Waluyo Puseurjaya Telukjambe Timur Karawang Jawa Barat, “Identifikasi Website Phishing dengan Perbandingan Algoritma Klasifikasi,” 2021. [Online]. Available: www.phishtank.com
[5] “Klasifikasi Malicious URL Menggunakan Algoritma Improved Random Forest dan Random Forest Berbasis Web,” Jurnal Sains dan Informatika, vol. 9, no. 1, pp. 8–14, Apr. 2023, doi: 10.22216/jsi.v9i1.1378.
[6] S. Diantika, “PENERAPAN TEKNIK RANDOM OVERSAMPLING UNTUK MENGATASI IMBALANCE CLASS DALAM KLASIFIKASI WEBSITE PHISHING MENGGUNAKAN ALGORITMA LIGHTGBM,” 2023.
[7] F. Bela Fransiska and F. B. Tobing, “Securing Indonesia Cyber Space: Strategies for Cyber Security in the Digital Era,” Cyber Security in the Digital Era. JSSP, vol. 7, no. 1, pp. 50–62, 2023.
[8] A. H. Nasrullah, “IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI PRODUK LARIS,” vol. 7, no. 2, 2021, [Online]. Available: http://ejournal.fikom-unasman.ac.id
[9] “Memperkuat Pertahanan Siber Guna Meningkatkan Ketahanan Nasional.”
[10] B. R. Sanjaya et al., “PENGEMBANGAN CYBER SECURITY DALAM MENGHADAPI CYBER WARFARE DI INDONESIA,” 2022.
[11] A. Maria De Liguori Sakunab and A. Silvia, “Halaman: 195-208 Terakreditasi Peringkat 5 (SINTA 5) sesuai SK RISTEKDIKTI Nomor,” 2021. [Online]. Available: http://ejurnal.ubharajaya.ac.id/index.php/JKI
[12] “Simorangkir et al. - 2023 - CYBER SECURITY DALAM STUDI KEAMANAN NASIONAL POLI”.
[13] K. Marcello Jonathan, B. Mulyawan, and N. Jaya Perdana, “Jurnal Ilmu Komputer dan Sistem Informasi PERBANDINGAN KINERJA ALGORITMA NAÏVE BAYES DAN C4.5 UNTUK MENDETEKSI PENGELABUAN UNIFORM RESOURCE LOCATOR (PHISHING URL).”
[14] D. Napitupulu and M. Kom, “Kajian Peran Cyber Law Dalam Memperkuat Keamanan Sistem Informasi Nasional.”
[15] A. Razzaq, M. Aditya, A. Widya, O. Kuncoro Putri, D. L. Musthofa, and P. Widodo, “Serangan Hacking Tools sebagai Ancaman Siber dalam Sistem Pertahanan Negara (Studi Kasus: Predator),” Global Political Studies Journal, vol. 6, 2022, doi: 10.34010/gpsjournal.v6i1.
[16] A.- Husaini, I. Hariyanti, and A. R. Raharja, “Perbandingan Algoritma Decision Tree dan Naive Bayes dalam Klasifikasi Data Pengaruh Media Sosial dan Jam Tidur Terhadap Prestasi Akademik Siswa,” Technologia : Jurnal Ilmiah, vol. 15, no. 2, p. 332, Apr. 2024, doi: 10.31602/tji.v15i2.14381.
[17] A. F. Mahmud and S. Wirawan, “Sistemasi: Jurnal Sistem Informasi Deteksi Phishing Website menggunakan Machine Learning Metode Klasifikasi Phishing Website Detection using Machine Learning Classification Method.” [Online]. Available: http://sistemasi.ftik.unisi.ac.id
[18] A. Ferdita Nugraha, R. Faticha, A. Aziza, and Y. Pristyanto, “Penerapan metode Stacking dan Random Forest untuk Meningkatkan Kinerja Klasifikasi pada Proses Deteksi Web Phishing,” vol. 7, no. 1.
[19] R. P. Ramadhan and T. Desyani, “Implementasi Algoritma J48 Untuk Identifikasi Website Phising,” Teknik dan Multimedia, vol. 1, no. 2, 2023.
[20] A. F. Rosy, “Kerjasama Internasional Indonesia: Memperkuat Keamanan Nasional di Bidang Keamanan Siber,” Journal of Government Science (GovSci) : Jurnal Ilmu Pemerintahan, vol. 1, no. 2, pp. 118–129, Jul. 2020, doi: 10.54144/govsci.v1i2.12.
[21] “29819”.
[22] D. Ciri Link Phishing Menggunakan Algoritma Random Forest Untuk Meningkatkan Keamanan Cyber, Y. Purnomo, C. Herdian, A. Radiatul Kamila, and S. Virginia, “Techno Xplore Jurnal Ilmu Komputer dan Teknologi Informasi.” [Online]. Available: https://www.kaggle.com/
[23] V. Aprelia Windarni, A. Ferdita Nugraha, S. Tri Atmaja Ramadhani, D. Anisa Istiqomah, F. Mahananing Puri, and A. Setiawan, “DETEKSI WEBSITE PHISHING MENGGUNAKAN TEKNIK FILTER PADA MODEL MACHINE LEARNING,” 2023.
[24] Y. W, Y. B. Fitriana, S. Esabela, and F. Hamdani, “Deteksi Serangan Malware Pada Web Aplikasi Menggunakan Metode Malware Analis Dinamis dan Statis,” Digital Transformation Technology, vol. 4, no. 1, pp. 461–470, Jul. 2024, doi: 10.47709/digitech.v4i1.4270.
[25] A. T. Zy, A. T. Sasongko, and A. Z. Kamalia, “Penerapan Naïve Bayes Classifier, Support Vector Machine, dan Decision Tree untuk Meningkatkan Deteksi Ancaman Keamanan Jaringan,” Media Online), vol. 4, no. 1, pp. 610–617, 2023, doi: 10.30865/klik.v4i1.1134.