Development of AI-Based Chatbots Using Feedforward Neural Network Approach for Customer Service Interaction
##plugins.themes.academic_pro.article.main##
Abstract
Artificial Intelligence (AI) is now an important solution to facilitate access to information, especially in the field of academic services. This research develops an AI-based interactive chatbot designed to provide information about Universitas Internasional Batam (UIB) using an intent-based approach. With the Advanced Neural Network approach (Feed-Forward Neural Network or FNN), this chatbot is capable of providing relevant responses to common questions about study programs, registration, campus facilities, and other services at UIB. The development process applies the structured Waterfall methodology, and initial testing is conducted in the Visual Studio Code environment. This research offers a foundation for the development of an intent-based informative chatbot that can assist prospective students and other users in accessing academic information at higher education institutions.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] E. Adamopoulou and L. Moussiades, “Chatbots: History, technology, and applications,” Mach. Learn. with Appl., vol. 2, 2020, doi: 10.1016/j.mlwa.2020.100006.
[3] L. Nicolescu and M. T. Tudorache, “Human-Computer Interaction in Customer Service: The Experience with AI Chatbots—A Systematic Literature Review,” Electronics (Switzerland), vol. 11, no. 10. 2022. doi: 10.3390/electronics11101579.
[4] E. Carter and C. Knol, “Chatbots — an organisation’s friend or foe?,” Res. Hosp. Manag., vol. 9, no. 2, 2019, doi: 10.1080/22243534.2019.1689700.
[5] N. F. Davar, M. A. A. Dewan, and X. Zhang, “AI Chatbots in Education: Challenges and Opportunities,” Information, 2025, [Online]. Available: https://doi.org/10.3390/info16030235
[6] M. Nuruzzaman and O. K. Hussain, “A Survey on Chatbot Implementation in Customer Service Industry through Deep Neural Networks,” in Proceedings - 2018 IEEE 15th International Conference on e-Business Engineering, ICEBE 2018, 2018. doi: 10.1109/ICEBE.2018.00019.
[7] E. Adamopoulou and L. Moussiades, “An Overview of Chatbot Technology,” in IFIP Advances in Information and Communication Technology, 2020. doi: 10.1007/978-3-030-49186-4_31.
[8] L. Labadze, M. Grigolia, and L. Machaidze, “Role of AI chatbots in education: systematic literature review,” International Journal of Educational Technology in Higher Education, vol. 20, no. 1. 2023. doi: 10.1186/s41239-023-00426-1.
[9] M. H. Chao, A. J. C. Trappey, and C. T. Wu, “Emerging Technologies of Natural Language-Enabled Chatbots: A Review and Trend Forecast Using Intelligent Ontology Extraction and Patent Analytics,” Complexity, vol. 2021. 2021. doi: 10.1155/2021/5511866.
[10] N. Ss, M. Nandini, U. Imon, and S. Shivaprasad, “AI-Ml Customer Support Chatbot using FFNN-Feed F orward Neural Network Preprocessing Technique,” Int. J. Eng. Res. Technol., no. April, 2025.
[11] M. A. Hamzah, S. Siaulhak, I. Iriansa, A. Jumardi, and A. Aman, “Utilization of Artificial Intelligence in Chatbot Development for New Student Admission Support at Cokroaminoto University Palopo,” 2023, doi: 10.11594/nstp.2024.4121.
[12] A. A. Arifiyanti, I. F. Daniar, R. Permatasari, and A. R. E. Najaf, “Designing Flow-Based Chatbot as Student Information Service Center,” NST Proc., pp. 123–130, 2023.
[13] D. L. Chen, K. Aaltonen, H. Lampela, and J. Kujala, “The Design and Implementation of an Educational Chatbot with Personalized Adaptive Learning Features for Project Management Training,” Technol. Knowl. Learn., 2025, doi: 10.1007/s10758-024-09807-5.
[14] N. R. P. Syallya, A. A. Pravitasari, and A. Helen, “NLP-Based Intent Classification Model for Academic Curriculum Chatbots in Universities Study Programs,” J. RESTI, vol. 9, no. 1, pp. 111–117, 2025, doi: 10.29207/resti.v9i1.6276.
[15] M. A. Ayanwale and R. R. Molefi, “Exploring intention of undergraduate students to embrace chatbots: from the vantage point of Lesotho,” Int. J. Educ. Technol. High. Educ., vol. 21, no. 1, 2024, doi: 10.1186/s41239-024-00451-8.
[16] K. Pearce, S. Alghowinem, and C. Breazeal, “Build-a-Bot: Teaching Conversational AI Using a Transformer-Based Intent Recognition and Question Answering Architecture,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 2023. doi: 10.1609/aaai.v37i13.26903.
[17] V. Ahmed and A. Opoku, “Technology supported learning and pedagogy in times of crisis: the case of COVID-19 pandemic,” Educ. Inf. Technol., vol. 27, no. 1, 2022, doi: 10.1007/s10639-021-10706-w.
[18] S. Wibawa, “Analisis Chatbot Otomatisasi Tugas Administratif dan Manajemen Dalam Lingkungan Digital Dengan Menggunakan Python,” Insantek, vol. 4, no. 1, pp. 25–31, 2023, doi: 10.31294/insantek.v4i1.2190.
[19] Mahardhika Chandra, Rizki Pratama, Fathan Azka Pradana, and Alvita Bonita, “Chatbot Interaksi Rumah Sakit menggunakan FFNN,” Indones. J. Data Sci., vol. 3, no. 1, 2022, doi: 10.56705/ijodas.v3i1.36.
[20] R. Faurina, M. J. Gazali, and I. D. A. Herani, “Implementasi Deep Feed-Forward Neural Network pada Perancangan Chatbot Berbasis Web di UPPIK RSUD M. YUNUS,” Komputika J. Sist. Komput., vol. 12, no. 2, 2023, doi: 10.34010/komputika.v12i2.8914.