Designs of Maggot Rotary Dryer to Support Alternative Feed Production
##plugins.themes.academic_pro.article.main##
Abstract
The growth of maggot cultivation as an alternative feed source is increasing in response to the demand for sustainable organic waste management solutions. However, the drying process remains a major challenge, especially for small and medium-scale operations. This study aims to design and develop a 20-kg capacity rotary maggot dryer that is efficient, energy-saving, and suitable for community-scale production. The design method includes user needs analysis, material selection, CAD-based design simulation, and testing tool performance. The results indicated that the dryer can reduce maggot moisture content within an average drying time of 3 hours at 60–70°C with relatively low energy consumption. This innovation is expected to improve maggot production efficiency and promote appropriate technology for sustainable alternative feed development at the community level.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] S. Biswas and I. Kim, "A thorough review of phytogenic feed additives in non-ruminant nutrition: production, gut health, and environmental concerns," J. Anim. Sci. Technol., 2025, doi: 10.5187/jast.2025.e26.
[3] A. Albalawneh, H. Hasan, S. F. Alarsan, M. Diab, S. Abu Znaimah, A. Sweity, M. M. Aladwan, B. Sharman, A. M. Alalwan, Y. AlBalawnah, M. A. Dayyeh, dan E. Alnaimat, "Evaluating the influence of nutrient-rich substrates on the growth and waste reduction efficiency of black soldier fly larvae," Sustainability, vol. 16, no. 22, p. 9730, 2024, doi: 10.3390/su16229730.
[4] J. Camperio, J. A. Suarez, J. Simonton, E. Paresky, J. Parodi, dan D. D. Benetti, "Valorizing organic waste through black soldier fly larvae (Hermetia illucens): A sustainable solution for aquafeeds with key nutrients and natural bioactive polyphenols," Sustainability, vol. 17, no. 5, p. 1788, 2025, doi: 10.3390/su17051788.
[5] J. C. Olowoyeye, “Biochemical Implications and Strategic Utilization of Alternative Feed Ingredients in Nigerian Poultry Production: Challenges, Gaps, and Future Perspectives”, Asian J. Adv. Agric. Res., vol. 25, no. 6, pp. 30–41, May 2025.
[6] S. Anusha dan P. S. Negi, "Edible insects as innovative ingredients: processing technologies and insect incorporated foods," J. Insects Food Feed, vol. 9, no. 8, hlm. 1003–1016, 2023, doi: 10.3920/JIFF2022.0026.
[7] M. Montesqrit, H. Harnentis, and F. A, “Impact of Processing Black Soldier Fly (Hermetia illucens) Larvae into Meal on Nutritional Value”, twj, vol. 10, no. 2, pp. 38-44, Jan. 2025.
[8] S. Sumiyarti, H. R. Rahayu, and R. N. Ratna, “Increasing Community Self-Reliance through Maggot at Villa 1 Asri Waste Bank, Bekasi Regency: Peningkatan Kemandirian Masyarakat melalui Maggot pada Bank Sampah Villa 1 Asri, Kabupaten Bekasi”, CONSEN, vol. 4, no. 1, pp. 94-101, Feb. 2024.
[9] A. M. O. Babiker, M. H. Elhesain, M. M. Widatalla, S. E. Idriss, H. Hassan, and K. E. Sahal, “Effect of Solar Dryer and Direct Open Sun Drying Methods on Drying Air Temperatures and Moisture Content of Fish Bayad (Bagrus bayad )”, ejeba, vol. 1, no. 2, pp. 3-13, May 2024.
[10] F. M. Namayengo, M. Raymond, A. Alex, dan J. H. Muyonga, "Techno economic analysis of refractance window drying of fruits: A case of small-medium scale agro processors in Uganda," Int. J. Sci. Adv. (IJSCIA), vol. 2, no. 5, pp. 801–806, Sep.–Oct. 2021.
[11] N. Konar, Y. Durmaz, B. Gurbuz, D. G. Polat, dan B. Mert, "Spray-drying optimization for Dunaliella salina and Porphyridium cruentum biomass," Drying Technol., vol. 41, no. 15, pp. 2371–2384, 2023, doi: 10.1080/07373937.2023.2244058.
[12] S. Gasa, S. Sibanda, T. S. Workneh, M. Laing, dan A. Kassim, "Thin-layer modelling of sweet potato slices drying under naturally-ventilated warm air by solar-venturi dryer," Heliyon, vol. 8, no. 2, p. e08949, 2022, doi: 10.1016/j.heliyon.2022.e08949.
[13] D. Tikhomirov, A. Khimenko, A. Kuzmichev, D. Budnikov, dan V. Bolshev, "Raising the drying unit for fruits and vegetables energy efficiency by application of thermoelectric heat pump," Agriculture, vol. 14, no. 6, p. 922, 2024, doi: 10.3390/agriculture14060922.
[14] Zainuddin, Eswanto, Jufrizal, Mulyadi, Barita, dan A. Nasution, "The effect of heat, air mass flow rate and temperature on paddy drying time using rotary type dryer," IOP Conf. Ser.: Mater. Sci. Eng., vol. 420, p. 012017, 2018, doi: 10.1088/1757-899X/420/1/012017.
[15] J. Havlík dan T. Dlouhý, "Indirect dryers for biomass drying—Comparison of experimental characteristics for drum and rotary configurations," ChemEngineering, vol. 4, no. 1, p. 18, 2020, doi: 10.3390/chemengineering4010018.
[16] J. Driver, M. T. Hardin, T. Howes, dan G. Palmer, "Effect of lifter design on drying performance in rotary dryers," Drying Technol., vol. 21, no. 2, pp. 369–381, 2003, doi: 10.1081/DRT-120017756.
[17] Z. Moondra, A. Junaidi, R. Selly, S. Rahmah, H. I. Nasution, dan Z. Muchtar, "Application of rotary dryer modification technology to increase animal feed production efficiency," Jurnal Pengolahan Makanan (JPM), vol. 6, no. 2, 2022, doi: 10.12928/jpm.v6i2.5360.
[18] Y. Fahni, A. Sanjaya, M. Mustafa, D. R. Saputri, dan A. Herlambang, "The implementation of rotary POC technology for organic fertilizer production in Tarahan Village, South Lampung," ABDIMAS: J. Pengabdian Masyarakat, vol. 6, no. 4, pp. 4807–4813, 2023, doi: 10.35568/abdimas.v6i4.4126.
[19] H. Perazzini, M. T. B. Perazzini, F. B. Freire, dan J. T. Freire, "Efficiency analysis of citrus waste biomass valorization using rotary dryer," Drying Technol., vol. 40, no. 16, pp. 3532–3542, 2022, doi: 10.1080/07373937.2022.2064871.