Application of Artificial Neural Network Algorithms to Heart Disease Prediction Models with Python Programming
##plugins.themes.academic_pro.article.main##
Abstract
Heart disease is one of the deadliest diseases in and is the number one killer in the world so many studies are carried out to contribute to predicting a person's heart disease. This study aims to help create an early heart disease prediction model from the UCI Machine Learning Repository dataset. The method proposed in this study is a deep learning technique that applies an artificial neural network algorithm with a hidden layer technique in making a heart disease prediction model. This research stage found problems in improving the accuracy of the datasets used by dealing with problems in pre-processing data, such as missing data and determining the form of data correlation. The model was then tested through a heart disease dataset and yielded 90% accuracy. With the creation of this prediction model with python programming, it is hoped that in addition to helping to make disease predictions, it can also provide further innovations in data science in the health sector.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
[2] G. Perkasa, “Penyakit Jantung Penyebab Kematian Utama di Dunia,†Kompas.com, 2020.
[3] https://sehatnegeriku.kemkes.go.id
[4] A. Riani, Y. Susianto, N. Rahman, dan U. D. Ali, “Implementasi Data Mining Untuk Memprediksi Penyakit Jantung Mengunakan Metode Naive Bayes Data Mining Implementation to Predict Heart Disease using Naive Bayes Method,†vol. 1, no. 01, hal. 25–34, 2019, doi: 10.35970/jinita.v1i01.64.
[5] S. Komputer dkk, “Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining,†vol. 4, no. 1, hal. 84–88, 2020.
[6] A. Alhamad, A. I. S. Azis, B. Santoso, dan S. Taliki, “Prediksi Penyakit Jantung Menggunakan Metode-Metode Machine Learning Berbasis Ensemble – Weighted Vote,†vol. 5, no. 3, hal. 352–360, 2019.
[7] J. Moolayil, Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python. 2019.
[8] J. Eckroth, Python Artificial Intelligence Projects for Beginners: Get up and Running with Artificial Intelligence Using 8 Smart and Exciting AI Applications. Packt Publishing, 2018.
[9] H. F. Hananta, I. Y., & Muhammad, Dietisien Deteksi Dini & Pencegahan 7 Penyakit Penyebab Mati Muda. 2011.
[10] N. K. Manaswi, Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech Recognition with TensorFlow and Keras. 2018.
[11] L. W. Scikit-learn dan M. L. W. Scikit-, Hands-On Machine Learning with Scikit-Learn and TensorFlow. O’Reilly Media, 2017.
[12] U. of C. I. M. L. Repository, “Heart Disease Dataset.†available: https://archive.ics.uci.edu/ml/datasets/heart+Disease.
[13] A. Çelik dkk, FUNDAMENTALS OF MACHINE LEARNING FOR PREDICTIVE DATA ANALYTICS, vol. 1, no. 1. 2018.
[14] M. Grinberg, Flask Web Development: Developing Web Applications with Python. 2014.
[15] I. Maia, Building Web Applications with Flask. 2014.